English

Evaluate the Following: `Cosec(Cos^-1 3/5)` - Mathematics

Advertisements
Advertisements

Question

Evaluate the following:

`cosec(cos^-1  3/5)`

Solution

`cosec(cos^-1  3/5)=cosec[sin^-1sqrt(1-(3/5)^2)]`    `[thereforecos^-1x=sin^-1sqrt(1-x^2)]`

`=cosec[sin^-1(sqrt(1-9/25))]`

`=cosec[sin^-1(sqrt(16/25))]`

`=cosec[sin^-1  4/5]`

`=cosec[cosec^-1  5/4]`

`=5/4`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.08 [Page 54]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.08 | Q 1.5 | Page 54

RELATED QUESTIONS

 

If `tan^(-1)((x-2)/(x-4)) +tan^(-1)((x+2)/(x+4))=pi/4` ,find the value of x

 

Find the domain of definition of `f(x)=cos^-1(x^2-4)`


`sin^-1(sin3)`


Evaluate the following:

`cos^-1{cos(-pi/4)}`


Evaluate the following:

`tan^-1(tan  (7pi)/6)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1{cot (-(8pi)/3)}`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`sin^-1{(x+sqrt(1-x^2))/sqrt2},-1<x<1`


Evaluate the following:

`sec(sin^-1  12/13)`


Prove the following result

`cos(sin^-1  3/5+cot^-1  3/2)=6/(5sqrt13)`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x < 0


`sin^-1x=pi/6+cos^-1x`


`5tan^-1x+3cot^-1x=2x`


Find the value of `tan^-1  (x/y)-tan^-1((x-y)/(x+y))`


Solve the following equation for x:

`tan^-1  2x+tan^-1  3x = npi+(3pi)/4`


`sin^-1  5/13+cos^-1  3/5=tan^-1  63/16`


If `cos^-1  x/2+cos^-1  y/3=alpha,` then prove that  `9x^2-12xy cosa+4y^2=36sin^2a.`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


For any a, b, x, y > 0, prove that:

`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1  (2alphabeta)/(alpha^2-beta^2)`

`where  alpha =-ax+by, beta=bx+ay`


Write the value of `sin^-1((-sqrt3)/2)+cos^-1((-1)/2)`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value of tan1 x + tan−1 `(1/x)`  for x < 0.


Write the value of

\[\cos^{- 1} \left( \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\].


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of sin−1 \[\left( \cos\frac{\pi}{9} \right)\]


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


Write the value of \[\sin^{- 1} \left( \sin\frac{3\pi}{5} \right)\]


Find the value of \[\tan^{- 1} \left( \tan\frac{9\pi}{8} \right)\]


If  \[\cos^{- 1} \frac{x}{a} + \cos^{- 1} \frac{y}{b} = \alpha, then\frac{x^2}{a^2} - \frac{2xy}{ab}\cos \alpha + \frac{y^2}{b^2} = \]


The positive integral solution of the equation
\[\tan^{- 1} x + \cos^{- 1} \frac{y}{\sqrt{1 + y^2}} = \sin^{- 1} \frac{3}{\sqrt{10}}\text{ is }\]


If \[\cos^{- 1} x > \sin^{- 1} x\], then


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


The value of sin `["cos"^-1 (7/25)]` is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×