Advertisements
Advertisements
प्रश्न
Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]
उत्तर
We have
\[\cos^{- 1} \left( \tan\frac{3\pi}{4} \right) = \cos^{- 1} \left\{ - \tan\left( \pi - \frac{3\pi}{4} \right) \right\} \left[ \because \tan\left( \pi - x \right) = - \tan{x} \right]\]
\[ = \cos^{- 1} \left\{ \tan\left( - \frac{\pi}{4} \right) \right\}\]
\[ = \cos^{- 1} \left\{ - \tan\left( \frac{\pi}{4} \right) \right\}\]
\[ = \cos^{- 1} \left( - 1 \right)\]
\[ = \cos^{- 1} \left( cos\pi \right) \left[ \because cos\pi = - 1 \right]\]
\[ = \pi\]
∴ \[\cos^{- 1} \left( \tan\frac{3\pi}{4} \right) = \pi\]
APPEARS IN
संबंधित प्रश्न
Solve the following for x :
`tan^(-1)((x-2)/(x-3))+tan^(-1)((x+2)/(x+3))=pi/4,|x|<1`
Solve the following for x:
`sin^(-1)(1-x)-2sin^-1 x=pi/2`
`sin^-1(sin12)`
Evaluate the following:
`cos^-1(cos12)`
Evaluate the following:
`sec^-1(sec (9pi)/5)`
Evaluate the following:
`cosec^-1(cosec (3pi)/4)`
Evaluate the following:
`cosec^-1{cosec (-(9pi)/4)}`
Write the following in the simplest form:
`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`
Evaluate the following:
`sin(tan^-1 24/7)`
Evaluate:
`tan{cos^-1(-7/25)}`
Evaluate:
`cot(sin^-1 3/4+sec^-1 4/3)`
Evaluate:
`cos(sec^-1x+\text(cosec)^-1x)`,|x|≥1
If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,` Find x
`4sin^-1x=pi-cos^-1x`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`sin(1/2cos^-1 4/5)`
Prove that:
`2sin^-1 3/5=tan^-1 24/7`
`sin^-1 4/5+2tan^-1 1/3=pi/2`
`2sin^-1 3/5-tan^-1 17/31=pi/4`
If `sin^-1 (2a)/(1+a^2)-cos^-1 (1-b^2)/(1+b^2)=tan^-1 (2x)/(1-x^2)`, then prove that `x=(a-b)/(1+ab)`
Prove that `2tan^-1(sqrt((a-b)/(a+b))tan theta/2)=cos^-1((a costheta+b)/(a+b costheta))`
Prove that:
`tan^-1 (2ab)/(a^2-b^2)+tan^-1 (2xy)/(x^2-y^2)=tan^-1 (2alphabeta)/(alpha^2-beta^2),` where `alpha=ax-by and beta=ay+bx.`
What is the value of cos−1 `(cos (2x)/3)+sin^-1(sin (2x)/3)?`
Evaluate sin
\[\left( \frac{1}{2} \cos^{- 1} \frac{4}{5} \right)\]
Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of cos−1 \[\left( \cos\frac{5\pi}{4} \right)\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the value of \[\tan\left( 2 \tan^{- 1} \frac{1}{5} \right)\]
Write the value of \[\cos^{- 1} \left( \cos\frac{14\pi}{3} \right)\]
Write the principal value of \[\sin^{- 1} \left\{ \cos\left( \sin^{- 1} \frac{1}{2} \right) \right\}\]
2 tan−1 {cosec (tan−1 x) − tan (cot−1 x)} is equal to
If sin−1 x − cos−1 x = `pi/6` , then x =
If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then
If x < 0, y < 0 such that xy = 1, then tan−1 x + tan−1 y equals
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If θ = sin−1 {sin (−600°)}, then one of the possible values of θ is
The domain of \[\cos^{- 1} \left( x^2 - 4 \right)\] is
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Find the simplified form of `cos^-1 (3/5 cosx + 4/5 sin x)`, where x ∈ `[(-3pi)/4, pi/4]`