हिंदी

Find : ∫ 2 Cos X ( 1 − Sin X ) ( 1 + Sin 2 X ) D X . - Mathematics

Advertisements
Advertisements

प्रश्न

Find : \[\int\frac{2 \cos x}{\left( 1 - \sin x \right) \left( 1 + \sin^2 x \right)}dx\] .

उत्तर

\[\text { Let }  \sin  x   =   t   \Rightarrow   \cos x  dx   =   dt\] 
\[\int\frac{2dt}{\left( 1 - t \right)\left( 1 + t^2 \right)}\] 
\[\text { Using  partial  fraction }\] 
\[\frac{2}{\left( 1 - t \right)\left( 1 + t^2 \right)}   =   \frac{A}{\left( 1 - t \right)} +   \frac{Bt + C}{\left( 1 + t^2 \right)}\] 
\[\text { On  solving } A   = 1,   B   =   1,   C   =   1\] 
\[\int\frac{2dt}{\left( 1 - t \right)\left( 1 + t^2 \right)}   =   \int\frac{dt}{\left( 1 - t \right)} + \int\frac{\left( 1 + t \right)}{\left( 1 + t^2 \right)}dt\] 
\[ = \int\frac{dt}{\left( 1 - t \right)}   +   \int\frac{dt}{\left( 1 + t^2 \right)} + \int\frac{t  dt}{\left( 1 + t^2 \right)}\] 
\[ =    - \ln  (1 - t)   +    \tan^{- 1} t   +   \frac{1}{2}\ln\left( 1 + t^2 \right)\] 
\[ =   \ln  \frac{\sqrt{1 + t^2}}{1 - t}   +    \tan^{- 1} t   +   C\] 
\[\text { Replacing  the  value  of  t }\] 
\[ = \ln  \frac{\sqrt{1 + \sin^2 x}}{1 - \sin x}   +    \tan^{- 1} (\sin  x)   +   C\] 
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2017-2018 (March) All India Set 3

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


If (tan1x)2 + (cot−1x)2 = 5π2/8, then find x.


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  pi/6)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1(cot  (9pi)/4)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)-1)/x},x !=0`


Write the following in the simplest form:

`tan^-1(x/(a+sqrt(a^2-x^2))),-a<x<a`


Evaluate the following:

`sin(sin^-1  7/25)`

 


Evaluate the following:

`cot(cos^-1  3/5)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Evaluate:

`cos(tan^-1  3/4)`


Evaluate: 

`cot(sin^-1  3/4+sec^-1  4/3)`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


`4sin^-1x=pi-cos^-1x`


Prove the following result:

`sin^-1  12/13+cos^-1  4/5+tan^-1  63/16=pi`


Solve the following equation for x:

tan−1`((1-x)/(1+x))-1/2` tan−1x = 0, where x > 0


`2tan^-1(1/2)+tan^-1(1/7)=tan^-1(31/17)`


Solve the following equation for x:

`tan^-1  1/4+2tan^-1  1/5+tan^-1  1/6+tan^-1  1/x=pi/4`


Solve the following equation for x:

`3sin^-1  (2x)/(1+x^2)-4cos^-1  (1-x^2)/(1+x^2)+2tan^-1  (2x)/(1-x^2)=pi/3`


What is the value of cos−1 `(cos  (2x)/3)+sin^-1(sin  (2x)/3)?`


Write the value of sin \[\left\{ \frac{\pi}{3} - \sin^{- 1} \left( - \frac{1}{2} \right) \right\}\]


\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]

 


Write the value of \[\cos^{- 1} \left( - \frac{1}{2} \right) + 2 \sin^{- 1} \left( \frac{1}{2} \right)\] .


Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×