हिंदी

Solve the Following Equation For X: 2tan-1(Sinx)=Tan-1(2sinx),XΠ2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x:

2tan-1(sinx)=tan-1(2sinx),xπ2

उत्तर

2tan-1(sinx)=tan-1(2sinx),xπ2

tan-1(2sinx1-sin2x)=tan-1(2sinx)     [2tan-1x=tan-1(2x1-x2)]

2sinx1-sin2x=2sinx

2sinx=2sinx-2sin3x

2sin2x=0

sinx=0

x=0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.14 [पृष्ठ ११६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.14 | Q 8.4 | पृष्ठ ११६

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

 

If tan-1(x-2x-4)+tan-1(x+2x+4)=π4 ,find the value of x

 

Find the domain of definition of f(x)=cos-1(x2-4)


sin-1(sin 13π7)


sin-1(sin12)


Evaluate the following:

cos-1(cos4)


Evaluate the following:

cos-1(cos5)


Evaluate the following:

cos-1(cos12)


Evaluate the following:

cosec-1(cosec 3π4)


Evaluate the following:

cosec-1(cosec 11π6)


Evaluate the following:

cosec-1{cosec (-9π4)}


Evaluate the following:

cot-1{cot (21π4)}


Write the following in the simplest form:

tan-1a-xa+x,-a<x<a


Evaluate the following:

cosec(cos-1 35)


Solve: cos(sin-1x)=16


If cos-1x+cos-1y=π4,  find the value of sin-1x+sin-1y


Solve the following equation for x:

tan-1 2x+tan-1 3x=nπ+3π4


Solve the following equation for x:

tan-1(x-2x-4)+tan-1(x+2x+4)=π4


2tan-1(12)+tan-1(17)=tan-1(3117)


Prove that:

tan-1 2aba2-b2+tan-1 2xyx2-y2=tan-1 2αβα2-β2,   where α=ax-by and β=ay+bx.


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


What is the value of cos−1 (cos 2x3)+sin-1(sin 2x3)?


Write the value of

cos1(12)+2sin1(12).


Write the value of sin−1

(sin(600°)).

 

 


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of cos(12cos135)


Write the value of cos−1 (cos5π4)


Write the value of sin1(13)cos1(13)


Wnte the value of the expression tan(sin1x+cos1x2), when x=32


Write the principal value of sin1{cos(sin112)}


Write the value of  cot-1(-x)  for all xR in terms of cot-1(x)


If cos(sin125+cos1x)=0, find the value of x.

 

If tan1(1+x21x21+x2+1x2)  = α, then x2 =




If tan−1 (cot θ) = 2 θ, then θ =

 


Find : 2cosx(1sinx)(1+sin2x)dx .


Find the domain of sec-1(3x-1).


Solve for x : {xcos(cot-1 x) + sin(cot-1 x)}= 5150


The value of sin [cos-1(725)] is ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.