मराठी

If `(Sin^-1x)^2 + (Sin^-1y)^2+(Sin^-1z)^2=3/4pi^2,` Find the Value of X2 + Y2 + Z2 - Mathematics

Advertisements
Advertisements

प्रश्न

If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 

उत्तर

We know that the maximum value of `sin^-1x. sin^-1y, sin^-1z    is   pi/2` and minimum value of `sin^-1x, sin^-1y, sin^-1z   is    pi/2`

Now,

For maximum value

LHS `=(sin^-1x)^2+(sin^-1y)^2+(sin^-1z)^2`

`=(pi/2)^2+(pi/2)^2+(pi/2)^2`

`=3/4pi^2=`RHS

and For minimum value

LHS `=(sin^-1x)^2+(sin^-1y)^2+(sin^-1z)^2`

`=(-pi/2)^2+(-pi/2)^2+(-pi/2)^2`

`=3/4pi^2` = RHS

Now, For maximum value

`sin^-1x=pi/2,sin^-1y=pi/2,sin^-1z=pi/2`

⇒ `x = sin  pi/2,y=sin  pi/2, z = sin  pi/2`

⇒ x = 1, y = 1, z = 1

∴ x2 + y+ z2 = 1 + 1 + 1 = 3

and for minimum value

`sin^-1x=-pi/2,sin^-1y=-pi/2,sin^-1z=-pi/2`

⇒ `x=sin(-pi/2),y=sin(-pi/2),z=sin(-pi/2)`

⇒ x = -1, y = -1, z = -1

∴ x2 + y2 + z2 = 1 + 1 + 1 = 3 

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 4: Inverse Trigonometric Functions - Exercise 4.01 [पृष्ठ ७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 4 Inverse Trigonometric Functions
Exercise 4.01 | Q 5 | पृष्ठ ७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Write the value of `tan(2tan^(-1)(1/5))`


Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`


Solve for x:

`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


`sin^-1{(sin - (17pi)/8)}`


`sin^-1(sin2)`


Evaluate the following:

`cos^-1{cos  (13pi)/6}`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`sin(cos^-1  5/13)`


Evaluate the following:

`cot(cos^-1  3/5)`


Evaluate the following:

`cos(tan^-1  24/7)`


If `sin^-1x+sin^-1y=pi/3`  and  `cos^-1x-cos^-1y=pi/6`,  find the values of x and y.


`4sin^-1x=pi-cos^-1x`


`5tan^-1x+3cot^-1x=2x`


Solve the equation `cos^-1  a/x-cos^-1  b/x=cos^-1  1/b-cos^-1  1/a`


Prove that: `cos^-1  4/5+cos^-1  12/13=cos^-1  33/65`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


`tan^-1  1/7+2tan^-1  1/3=pi/4`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


Prove that

`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`


Find the value of the following:

`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.


Write the value of sin−1

\[\left( \sin( -{600}°) \right)\].

 

 


If tan−1 x + tan−1 y = `pi/4`,  then write the value of x + y + xy.


If 4 sin−1 x + cos−1 x = π, then what is the value of x?


If x < 0, y < 0 such that xy = 1, then write the value of tan1 x + tan−1 y.


What is the principal value of `sin^-1(-sqrt3/2)?`


Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of  \[\tan^{- 1} \left( \frac{1}{x} \right)\]  for x < 0 in terms of `cot^-1x`


If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.

 

If sin−1 − cos−1 x = `pi/6` , then x = 


\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\]  is equal to

 


The value of  \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to

 


The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×