Advertisements
Advertisements
प्रश्न
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
उत्तर
We know that the maximum value of `sin^-1x. sin^-1y, sin^-1z is pi/2` and minimum value of `sin^-1x, sin^-1y, sin^-1z is pi/2`
Now,
For maximum value
LHS `=(sin^-1x)^2+(sin^-1y)^2+(sin^-1z)^2`
`=(pi/2)^2+(pi/2)^2+(pi/2)^2`
`=3/4pi^2=`RHS
and For minimum value
LHS `=(sin^-1x)^2+(sin^-1y)^2+(sin^-1z)^2`
`=(-pi/2)^2+(-pi/2)^2+(-pi/2)^2`
`=3/4pi^2` = RHS
Now, For maximum value
`sin^-1x=pi/2,sin^-1y=pi/2,sin^-1z=pi/2`
⇒ `x = sin pi/2,y=sin pi/2, z = sin pi/2`
⇒ x = 1, y = 1, z = 1
∴ x2 + y2 + z2 = 1 + 1 + 1 = 3
and for minimum value
`sin^-1x=-pi/2,sin^-1y=-pi/2,sin^-1z=-pi/2`
⇒ `x=sin(-pi/2),y=sin(-pi/2),z=sin(-pi/2)`
⇒ x = -1, y = -1, z = -1
∴ x2 + y2 + z2 = 1 + 1 + 1 = 3
APPEARS IN
संबंधित प्रश्न
Write the value of `tan(2tan^(-1)(1/5))`
Find the value of the following: `tan(1/2)[sin^(-1)((2x)/(1+x^2))+cos^(-1)((1-y^2)/(1+y^2))],|x| <1,y>0 and xy <1`
Solve for x:
`2tan^(-1)(cosx)=tan^(-1)(2"cosec" x)`
Find the domain of `f(x) =2cos^-1 2x+sin^-1x.`
`sin^-1{(sin - (17pi)/8)}`
`sin^-1(sin2)`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`sec^-1{sec (-(7pi)/3)}`
Evaluate the following:
`sin(cos^-1 5/13)`
Evaluate the following:
`cot(cos^-1 3/5)`
Evaluate the following:
`cos(tan^-1 24/7)`
If `sin^-1x+sin^-1y=pi/3` and `cos^-1x-cos^-1y=pi/6`, find the values of x and y.
`4sin^-1x=pi-cos^-1x`
`5tan^-1x+3cot^-1x=2x`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
Prove that: `cos^-1 4/5+cos^-1 12/13=cos^-1 33/65`
Evaluate the following:
`tan{2tan^-1 1/5-pi/4}`
`tan^-1 1/7+2tan^-1 1/3=pi/4`
`2tan^-1 3/4-tan^-1 17/31=pi/4`
Prove that
`tan^-1((1-x^2)/(2x))+cot^-1((1-x^2)/(2x))=pi/2`
Find the value of the following:
`cos(sec^-1x+\text(cosec)^-1x),` | x | ≥ 1
Write the difference between maximum and minimum values of sin−1 x for x ∈ [− 1, 1].
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Write the value of sin−1
\[\left( \sin( -{600}°) \right)\].
If tan−1 x + tan−1 y = `pi/4`, then write the value of x + y + xy.
If 4 sin−1 x + cos−1 x = π, then what is the value of x?
If x < 0, y < 0 such that xy = 1, then write the value of tan−1 x + tan−1 y.
What is the principal value of `sin^-1(-sqrt3/2)?`
Write the principal value of \[\cos^{- 1} \left( \cos\frac{2\pi}{3} \right) + \sin^{- 1} \left( \sin\frac{2\pi}{3} \right)\]
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\tan^{- 1} \left( \frac{1}{x} \right)\] for x < 0 in terms of `cot^-1x`
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
If sin−1 x − cos−1 x = `pi/6` , then x =
\[\text{ If }\cos^{- 1} \frac{x}{3} + \cos^{- 1} \frac{y}{2} = \frac{\theta}{2}, \text{ then }4 x^2 - 12xy \cos\frac{\theta}{2} + 9 y^2 =\]
Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) =
sin \[\left\{ 2 \cos^{- 1} \left( \frac{- 3}{5} \right) \right\}\] is equal to
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
The equation sin-1 x – cos-1 x = cos-1 `(sqrt3/2)` has ____________.