English

A line passing through the point A with position vector a=4i+2j+2k is parallel to the vector b=2i+3j+6k . Find the length of the perpendicular drawn on this line from a point P with vector r1=i+2j+3k - Mathematics

Advertisements
Advertisements

Question

 

A line passing through the point A with position vector `veca=4hati+2hatj+2hatk` is parallel to the vector `vecb=2hati+3hatj+6hatk` . Find the length of the perpendicular drawn on this line from a point P with vector `vecr_1=hati+2hatj+3hatk`

 

Solution

 

Let the equation of the line be `vecr=veca+lambda vecb`

Here ` veca=4hati+2hatj+2hatk and vecb=2hati+3hatj+6hatk`

equation of the line `=4hati+2hatj+2hatk+lambda (2hati+3hatj+6hatk)`

Let L be the foot of the perpendicular and P be the required point from which we have to find the length of the perpendicular

`P(vecalpha)=hati+2hatj+3hatk`

vec(PL)=position vector of L -position vector of P

`=4hati+2hatj+2hatk+lambda (2hati+3hatj+6hatk)-(hati+2hatj+3hatk)`

`=3hati-hatk+lambda(2hati+3hatj+6hatk).................(i)`

Now, `vec(PL).vecb=0[Since vec(PL)" is perpendicular to "vecb]`

`=3hati-hatk+lambda(2hati+3hatj+6hatk).(2hati+3hatj+6hatk)=0`

`=>(3+2lambda)2+(3lambda)3+(-1+6lambda)6=0`

`=>6+4lambda+9lambda-6+36lambda=0`

`=>49lambda=0`

`therefore lambda=0`

`vec(PL)=3hati-hatk ["from "(ii)]`

`|vec(PL)|=|sqrt(3^2+(-1)^2)|`

`therefore  |vec(PL)|=sqrt(10)`

Length of the perpendicular drawn on the line from `P=sqrt(10)`

 
shaalaa.com
Vectors Examples and Solutions
  Is there an error in this question or solution?
2014-2015 (March) Panchkula Set 1

RELATED QUESTIONS

If a unit vector `veca` makes angles `pi/3` with `hati,pi/4` with `hatj` and acute angles θ with ` hatk,` then find the value of θ.


Write the value of `vec a .(vecb xxveca)`


Find x such that the four points A(4, 1, 2), B(5, x, 6) , C(5, 1, -1) and D(7, 4, 0) are coplanar.


if `|vecaxxvecb|^2+|veca.vecb|^2=400 ` and `|vec a| = 5` , then write the value of `|vecb|`


Using vectors find the area of triangle ABC with vertices A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1).


Find the angle between the vectors `vec"a" + vec"b" and  vec"a" -vec"b" if  vec"a" = 2hat"i"-hat"j"+3hat"k" and vec"b" = 3hat"i" + hat"j"-2hat"k", and"hence find a vector perpendicular to both"  vec"a" + vec"b" and vec"a" - vec"b"`.


Find the angle between the vectors `2hat"i" - hat"j" + hat"k"` and `3hat"i" + 4hat"j" - hat"k"`.


If `vec"a" + vec"b" + vec"c"` = 0, show that `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"`. Interpret the result geometrically?


Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, – 1, 4) and C(4, 5, – 1).


Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.


Show that area of the parallelogram whose diagonals are given by `vec"a"` and `vec"b"` is `(|vec"a" xx vec"b"|)/2`. Also find the area of the parallelogram whose diagonals are `2hat"i" - hat"j" + hat"k"` and `hat"i" + 3hat"j" - hat"k"`.


If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`, find a vector `vec"c"` such that `vec"a" xx vec"c" = vec"b"` and `vec"a"*vec"c"` = 3.


The value of λ for which the vectors `3hat"i" - 6hat"j" + hat"k"` and `2hat"i" - 4hat"j" + lambdahat"k"` are parallel is ______.


For any vector `vec"a"`, the value of `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` is equal to ______.


If `|vec"a"|` = 10, `|vec"b"|` = 2 and `vec"a".vec"b"` = 12, then value of `|vec"a" xx vec"b"|` is ______.


The vectors `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` and `2hat"i" - hat"j" + lambdahat"k"` are coplanar if ______.


If `|vec"a"|` = 4 and −3 ≤ λ ≤ 2, then the range of `|lambdavec"a"|` is ______.


The value of the expression `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` is ______.


If `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 and `|vec"a"|` = 4, then `|vec"b"|` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×