English

If aijka→=i^+j^+k^ and bjkb→=j^-k^, find a vector cc→ such that acba→×c→=b→ and aca→⋅c→ = 3. - Mathematics

Advertisements
Advertisements

Question

If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`, find a vector `vec"c"` such that `vec"a" xx vec"c" = vec"b"` and `vec"a"*vec"c"` = 3.

Sum

Solution

Let `vec"c" = "c"_1hat"i" + "c"_2hat"j" + "c"_3hat"k"`

Also given that `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`

Since, `vec"a" xx vec"c" = vec"b"`

∴ `|(hat"i", hat"j", hat"k"),(1, 1, 1),("c"_1, "c"_2, "c"_3)| = hat"j" - hat"k"`

= `hat"i"("c"_3 - "c"_2) - hat"j"("c"_3 - "c"_1) + hat"k"("c"_2 - "c"_1)`

= `hat"j" - hat"k"`

On comparing the like terms, we get

c3 – c2 = 0  ......(i)

c1 – c3 = 1  ....(ii)

And c2 – c1 = –1  ....(iii)

Now for `vec"a"*vec"c"` = 3  

`(hat"i" + hat"j" + hat"k") * ("c"_1hat"i" + "c"_2hat"j" + "c"_3hat"k")` = 3

∴ c1 + c2 + c3 = 3   ......(iv)

Adding equation (ii) and equation (iii) we get,

c2 – c3 = 0   ......(iv)

From (iv) and (v) we get

c1 + 2c2 = 3   .....(vi)

From (iii) and (vi) we get

              c1 + 2c2 = 3
             – c1 + c2 = – 1
Adding          3c2 = 2

∴ c2 = `2/3`

c3 – c2 = 0

⇒ `"c"_3 - 2/3` = 0

∴ c3 = `2/3`

Now c2 – c1 = –1

⇒ `2/3 - "c"_1` = –1

⇒ c1 = `1 + 2/3 = 5/3`

∴ `vec"c" = 5/3 hat"i" + 2/3hat"j" + 2/3hat"k"`

Hence, `vec"c" = 1/3(5hat"i" + 2hat"j" + 2hat"k")`.

shaalaa.com
Vectors Examples and Solutions
  Is there an error in this question or solution?
Chapter 10: Vector Algebra - Exercise [Page 216]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 10 Vector Algebra
Exercise | Q 18 | Page 216

RELATED QUESTIONS

If a unit vector `veca` makes angles `pi/3` with `hati,pi/4` with `hatj` and acute angles θ with ` hatk,` then find the value of θ.


Write the value of `vec a .(vecb xxveca)`


If `veca=hati+2hatj-hatk, vecb=2hati+hatj+hatk and vecc=5hati-4hatj+3hatk` then find the value of `(veca+vecb).vec c`


 

If `veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk` ,then find ` |veca xx vecb|`

 

Find x such that the four points A(4, 1, 2), B(5, x, 6) , C(5, 1, -1) and D(7, 4, 0) are coplanar.


 

A line passing through the point A with position vector `veca=4hati+2hatj+2hatk` is parallel to the vector `vecb=2hati+3hatj+6hatk` . Find the length of the perpendicular drawn on this line from a point P with vector `vecr_1=hati+2hatj+3hatk`

 

if `|vecaxxvecb|^2+|veca.vecb|^2=400 ` and `|vec a| = 5` , then write the value of `|vecb|`


If `vecr=xhati+yhatj+zhatk` ,find `(vecrxxhati).(vecrxxhatj)+xy`


Using vectors find the area of triangle ABC with vertices A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1).


Find the angle between the vectors `vec"a" + vec"b" and  vec"a" -vec"b" if  vec"a" = 2hat"i"-hat"j"+3hat"k" and vec"b" = 3hat"i" + hat"j"-2hat"k", and"hence find a vector perpendicular to both"  vec"a" + vec"b" and vec"a" - vec"b"`.


Find the angle between the vectors `2hat"i" - hat"j" + hat"k"` and `3hat"i" + 4hat"j" - hat"k"`.


If `vec"a" + vec"b" + vec"c"` = 0, show that `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"`. Interpret the result geometrically?


Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, – 1, 4) and C(4, 5, – 1).


Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.


Show that area of the parallelogram whose diagonals are given by `vec"a"` and `vec"b"` is `(|vec"a" xx vec"b"|)/2`. Also find the area of the parallelogram whose diagonals are `2hat"i" - hat"j" + hat"k"` and `hat"i" + 3hat"j" - hat"k"`.


The vectors from origin to the points A and B are `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` and `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, respectively, then the area of triangle OAB is ______.


For any vector `vec"a"`, the value of `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` is equal to ______.


If `|vec"a"|` = 10, `|vec"b"|` = 2 and `vec"a".vec"b"` = 12, then value of `|vec"a" xx vec"b"|` is ______.


The vectors `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` and `2hat"i" - hat"j" + lambdahat"k"` are coplanar if ______.


The value of the expression `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` is ______.


If `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 and `|vec"a"|` = 4, then `|vec"b"|` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×