Advertisements
Advertisements
Question
If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`, find a vector `vec"c"` such that `vec"a" xx vec"c" = vec"b"` and `vec"a"*vec"c"` = 3.
Solution
Let `vec"c" = "c"_1hat"i" + "c"_2hat"j" + "c"_3hat"k"`
Also given that `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`
Since, `vec"a" xx vec"c" = vec"b"`
∴ `|(hat"i", hat"j", hat"k"),(1, 1, 1),("c"_1, "c"_2, "c"_3)| = hat"j" - hat"k"`
= `hat"i"("c"_3 - "c"_2) - hat"j"("c"_3 - "c"_1) + hat"k"("c"_2 - "c"_1)`
= `hat"j" - hat"k"`
On comparing the like terms, we get
c3 – c2 = 0 ......(i)
c1 – c3 = 1 ....(ii)
And c2 – c1 = –1 ....(iii)
Now for `vec"a"*vec"c"` = 3
`(hat"i" + hat"j" + hat"k") * ("c"_1hat"i" + "c"_2hat"j" + "c"_3hat"k")` = 3
∴ c1 + c2 + c3 = 3 ......(iv)
Adding equation (ii) and equation (iii) we get,
c2 – c3 = 0 ......(iv)
From (iv) and (v) we get
c1 + 2c2 = 3 .....(vi)
From (iii) and (vi) we get
c1 + 2c2 = 3
– c1 + c2 = – 1
Adding 3c2 = 2
∴ c2 = `2/3`
c3 – c2 = 0
⇒ `"c"_3 - 2/3` = 0
∴ c3 = `2/3`
Now c2 – c1 = –1
⇒ `2/3 - "c"_1` = –1
⇒ c1 = `1 + 2/3 = 5/3`
∴ `vec"c" = 5/3 hat"i" + 2/3hat"j" + 2/3hat"k"`
Hence, `vec"c" = 1/3(5hat"i" + 2hat"j" + 2hat"k")`.
APPEARS IN
RELATED QUESTIONS
If a unit vector `veca` makes angles `pi/3` with `hati,pi/4` with `hatj` and acute angles θ with ` hatk,` then find the value of θ.
Write the value of `vec a .(vecb xxveca)`
If `veca=hati+2hatj-hatk, vecb=2hati+hatj+hatk and vecc=5hati-4hatj+3hatk` then find the value of `(veca+vecb).vec c`
If `veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk` ,then find ` |veca xx vecb|`
Find x such that the four points A(4, 1, 2), B(5, x, 6) , C(5, 1, -1) and D(7, 4, 0) are coplanar.
A line passing through the point A with position vector `veca=4hati+2hatj+2hatk` is parallel to the vector `vecb=2hati+3hatj+6hatk` . Find the length of the perpendicular drawn on this line from a point P with vector `vecr_1=hati+2hatj+3hatk`
if `|vecaxxvecb|^2+|veca.vecb|^2=400 ` and `|vec a| = 5` , then write the value of `|vecb|`
If `vecr=xhati+yhatj+zhatk` ,find `(vecrxxhati).(vecrxxhatj)+xy`
Using vectors find the area of triangle ABC with vertices A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1).
Find the angle between the vectors `vec"a" + vec"b" and vec"a" -vec"b" if vec"a" = 2hat"i"-hat"j"+3hat"k" and vec"b" = 3hat"i" + hat"j"-2hat"k", and"hence find a vector perpendicular to both" vec"a" + vec"b" and vec"a" - vec"b"`.
Find the angle between the vectors `2hat"i" - hat"j" + hat"k"` and `3hat"i" + 4hat"j" - hat"k"`.
If `vec"a" + vec"b" + vec"c"` = 0, show that `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"`. Interpret the result geometrically?
Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, – 1, 4) and C(4, 5, – 1).
Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.
Show that area of the parallelogram whose diagonals are given by `vec"a"` and `vec"b"` is `(|vec"a" xx vec"b"|)/2`. Also find the area of the parallelogram whose diagonals are `2hat"i" - hat"j" + hat"k"` and `hat"i" + 3hat"j" - hat"k"`.
The vectors from origin to the points A and B are `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` and `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, respectively, then the area of triangle OAB is ______.
For any vector `vec"a"`, the value of `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` is equal to ______.
If `|vec"a"|` = 10, `|vec"b"|` = 2 and `vec"a".vec"b"` = 12, then value of `|vec"a" xx vec"b"|` is ______.
The vectors `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` and `2hat"i" - hat"j" + lambdahat"k"` are coplanar if ______.
The value of the expression `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` is ______.
If `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 and `|vec"a"|` = 4, then `|vec"b"|` is equal to ______.