English

Show that area of the parallelogram whose diagonals are given by aa→ and bb→ is ab|a→×b→|2. Also find the area of the parallelogram whose diagonals are ijk2i^-j^+k^ and ijki^+3j^-k^. - Mathematics

Advertisements
Advertisements

Question

Show that area of the parallelogram whose diagonals are given by `vec"a"` and `vec"b"` is `(|vec"a" xx vec"b"|)/2`. Also find the area of the parallelogram whose diagonals are `2hat"i" - hat"j" + hat"k"` and `hat"i" + 3hat"j" - hat"k"`.

Sum

Solution


Let ABCD be a parallelogram such that, 

`vec"AB" = vec"p"`

`vec"AD" = vec"q" = vec"BC"`

∴ By law of triangle, we get

`vec"AC" = vec"a" = vec"p" + vec"q"`  .....(i)

And `vec"BD" = vec"b" = -vec"p" + vec"q"` .....(ii)

Adding equation (i) and (ii) we get,

`vec"a" + vec"b" = 2vec"q"`

⇒ `vec"q" = ((vec"a" + vec"b")/2)`

Subtracting equation (ii) from equation (i) we get

`vec"a" - vec"b" = 2vec"p"`

⇒ `vec"p" = ((vec"a" - vec"b")/2)`

∴ `vec"p" xx vec"q" = 1/4(vec"a" + vec"b") xx (vec"a" - vec"b")`

= `1/4 (vec"a" xx vec"a" - vec"a" xx vec"b" + vec"b" xx vec"a" - vec"b" xx vec"b")`

= `1/4(-vec"a" xx vec"b" xx vec"b" xx vec"a")`  ......`[(because vec"a" xx vec"a" = 0),(vec"b" xx vec"b" = 0)]`

= `1/4(vec"a" xx vec"b" + vec"a" xx vec"b")`

= `1/4 * 2(vec"a" xx vec"b")`

= `|vec"a" xx vec"b"|/2`

So, the area of the parallelogram ABCD = `|vec"p" xx vec"q"| = 1/2|vec"a" xx vec"b"|`

Now area of parallelogram whose diagonals are `2hat"i" - hat"j" + hat"k"` and `hat"i" + 3hat"j" - hat"k"`

= `1/2|(2hat"i" - hat"j" + hat"k") xx (hat"i" + 3hat"j" - hat"k")|`

= `-|(hat"i", hat"j", hat"k"),(2, 1, 1),(1, 3, 1)|`

= `1/2 |hat"i"(1 - 3) - hat"j"(-2 - 1) + hat"k"(6 + 1)|`

= `1/2 - 2hat"i" + 3hat"j" + 7hat"k"|`

= `1/2 sqrt((-2)^2 + (3)^2 + (7)^2)`

= `1/2 sqrt(4 + 9 + 49)`

= `1/2 sqrt(62)` sq.units

Hence, the required area is `1/2 sqrt(62)` sq.units

shaalaa.com
Vectors Examples and Solutions
  Is there an error in this question or solution?
Chapter 10: Vector Algebra - Exercise [Page 216]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 10 Vector Algebra
Exercise | Q 17 | Page 216

RELATED QUESTIONS

If a unit vector `veca` makes angles `pi/3` with `hati,pi/4` with `hatj` and acute angles θ with ` hatk,` then find the value of θ.


Write the value of `vec a .(vecb xxveca)`


Find x such that the four points A(4, 1, 2), B(5, x, 6) , C(5, 1, -1) and D(7, 4, 0) are coplanar.


 

A line passing through the point A with position vector `veca=4hati+2hatj+2hatk` is parallel to the vector `vecb=2hati+3hatj+6hatk` . Find the length of the perpendicular drawn on this line from a point P with vector `vecr_1=hati+2hatj+3hatk`

 

if `|vecaxxvecb|^2+|veca.vecb|^2=400 ` and `|vec a| = 5` , then write the value of `|vecb|`


If `vecr=xhati+yhatj+zhatk` ,find `(vecrxxhati).(vecrxxhatj)+xy`


Find `veca.(vecbxxvecc), " if " veca=2hati+hatj+3hatk, vecb=-hati+2hatj+hatk  " and " vecc=3hati+hatj+2hatk`


Find the angle between the vectors `2hat"i" - hat"j" + hat"k"` and `3hat"i" + 4hat"j" - hat"k"`.


If `vec"a" + vec"b" + vec"c"` = 0, show that `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"`. Interpret the result geometrically?


Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, – 1, 4) and C(4, 5, – 1).


If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`, find a vector `vec"c"` such that `vec"a" xx vec"c" = vec"b"` and `vec"a"*vec"c"` = 3.


The value of λ for which the vectors `3hat"i" - 6hat"j" + hat"k"` and `2hat"i" - 4hat"j" + lambdahat"k"` are parallel is ______.


The vectors from origin to the points A and B are `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` and `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, respectively, then the area of triangle OAB is ______.


If `|vec"a"|` = 10, `|vec"b"|` = 2 and `vec"a".vec"b"` = 12, then value of `|vec"a" xx vec"b"|` is ______.


The vectors `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` and `2hat"i" - hat"j" + lambdahat"k"` are coplanar if ______.


If `|vec"a"|` = 4 and −3 ≤ λ ≤ 2, then the range of `|lambdavec"a"|` is ______.


The value of the expression `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` is ______.


If `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 and `|vec"a"|` = 4, then `|vec"b"|` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×