English

If a|a→| = 4 and −3 ≤ λ ≤ 2, then the range of a|λa→| is ______. - Mathematics

Advertisements
Advertisements

Question

If `|vec"a"|` = 4 and −3 ≤ λ ≤ 2, then the range of `|lambdavec"a"|` is ______.

Options

  • [0, 8]

  • [–12, 8]

  • [0, 12]

  • [8, 12]

MCQ
Fill in the Blanks

Solution

If `|vec"a"|` = 4 and −3 ≤ λ ≤ 2, then the range of `|lambdavec"a"|` is [–12, 8].

Explanation:

Given that `|vec"a"|` = 4, −3 ≤ λ ≤ 2 

Now `|lambdavec"a"| = lambda|vec"a"| = lambda * 4 = 4lambda`

Here −3 ≤ λ ≤ 2

⇒ `-3.4 ≤ 4lambda ≤ 2.4`

⇒ `-12 ≤ 4lambda ≤ 8`

∴ `4lambda` = [–12, 8]

shaalaa.com
Vectors Examples and Solutions
  Is there an error in this question or solution?
Chapter 10: Vector Algebra - Exercise [Page 218]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 10 Vector Algebra
Exercise | Q 32 | Page 218

RELATED QUESTIONS

If a unit vector `veca` makes angles `pi/3` with `hati,pi/4` with `hatj` and acute angles θ with ` hatk,` then find the value of θ.


Write the value of `vec a .(vecb xxveca)`


If `veca=hati+2hatj-hatk, vecb=2hati+hatj+hatk and vecc=5hati-4hatj+3hatk` then find the value of `(veca+vecb).vec c`


 

If `veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk` ,then find ` |veca xx vecb|`

 

 

A line passing through the point A with position vector `veca=4hati+2hatj+2hatk` is parallel to the vector `vecb=2hati+3hatj+6hatk` . Find the length of the perpendicular drawn on this line from a point P with vector `vecr_1=hati+2hatj+3hatk`

 

If `vecr=xhati+yhatj+zhatk` ,find `(vecrxxhati).(vecrxxhatj)+xy`


Using vectors find the area of triangle ABC with vertices A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1).


Find the angle between the vectors `2hat"i" - hat"j" + hat"k"` and `3hat"i" + 4hat"j" - hat"k"`.


If `vec"a" + vec"b" + vec"c"` = 0, show that `vec"a" xx vec"b" = vec"b" xx vec"c" = vec"c" xx vec"a"`. Interpret the result geometrically?


Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.


Show that area of the parallelogram whose diagonals are given by `vec"a"` and `vec"b"` is `(|vec"a" xx vec"b"|)/2`. Also find the area of the parallelogram whose diagonals are `2hat"i" - hat"j" + hat"k"` and `hat"i" + 3hat"j" - hat"k"`.


If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`, find a vector `vec"c"` such that `vec"a" xx vec"c" = vec"b"` and `vec"a"*vec"c"` = 3.


The value of λ for which the vectors `3hat"i" - 6hat"j" + hat"k"` and `2hat"i" - 4hat"j" + lambdahat"k"` are parallel is ______.


The vectors from origin to the points A and B are `vec"a" = 2hat"i" - 3hat"j" + 2hat"k"` and `vec"b" = 2hat"i" + 3hat"j" + hat"k"`, respectively, then the area of triangle OAB is ______.


For any vector `vec"a"`, the value of `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` is equal to ______.


If `|vec"a"|` = 10, `|vec"b"|` = 2 and `vec"a".vec"b"` = 12, then value of `|vec"a" xx vec"b"|` is ______.


The value of the expression `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` is ______.


If `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 and `|vec"a"|` = 4, then `|vec"b"|` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×