Advertisements
Advertisements
Question
If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + vec"b" + vec"a" = vec0` and `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, then value of `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"` is ______.
Options
0
1
– 19
38
Solution
If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + vec"b" + vec"a" = vec0` and `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, then value of `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"` is – 19.
Explanation:
Given that `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5
And `vec"a" + vec"b" + vec"c" = vec0`
`(vec"a" + vec"b" + vec"c")*(vec"a" + vec"b" + vec"c") = vec0*vec0` = 0
⇒ `|vec"a"|^2 + vec"a"*vec"b" + vec"a"*vec"c" + vec"b"*vec"a" + |vec"b"|^2 + vec"b"*vec"c" + vec"c"*vec"b" + |vec"c"|^2` = 0
⇒ `|vec"a"|^2 + |vec"b"|^2 + |vec"c"|^2 + 2vec"a"*vec"b" + 2vec"b"*vec"c" + 2vec"c"*vec"a"` = 0
⇒ `(2)^2 + (3)^2 + (5)^2 + 2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")` = 0
⇒ `4 + 9 + 25 + 2 (vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")` = 0
⇒ `38 + 2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")` = 0
⇒ `2(vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a")` = – 38
∴ `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"` = – 19
APPEARS IN
RELATED QUESTIONS
Find the unit vector in the direction of the vector `veca = hati + hatj + 2hatk`.
Find the unit vector in the direction of vector `vec(PQ)`, where P and Q are the points (1, 2, 3) and (4, 5, 6), respectively.
If `|vec"a"| = |vec"b"|`, then necessarily it implies `vec"a" = +- vec"b"`.
If `veca, vecb, vecc` are three vectors such that `veca.vecb = veca.vecc` and `veca xx vecb = veca xx vecc, veca ≠ 0`, then show that `vecb = vecc`.
If `|veca`| = 3, `|vecb|` = 5, `|vecc|` = 4 and `veca + vecb + vecc` = `vec0`, then find the value of `(veca.vecb + vecb.vecc + vecc.veca)`.