Advertisements
Advertisements
Question
If `|veca`| = 3, `|vecb|` = 5, `|vecc|` = 4 and `veca + vecb + vecc` = `vec0`, then find the value of `(veca.vecb + vecb.vecc + vecc.veca)`.
Solution
Given, `|veca|` = 3, `|vecb|` = 5, `|vecc|` = 4
and `veca + vecb + vecc = vec0`
∴ `|veca + vecb + vecc| = |vec0|`
⇒ `|veca + vecb + vecc|^2` = 0
⇒ `(veca + vecb + vecc).(veca + vecb + vecc)` = 0
⇒ `veca.veca + veca.vecb + veca.vecc + vecb.veca + vecb.vecb + vecb.vecc + vecc.veca + vecc.vecb + vecc.vecc` = 0
⇒ `|veca|^2 + veca.vecb + vecc.veca + veca.vecb + |vecb|^2 + vecb.vecc + vecc.veca + vecb.vecc + |vecc|^2` = 0 ...`[∵ veca.vecb = vecb.veca, veca.vecc = vecc.veca, vecb.vecc = vecc.vecb]`
⇒ `|veca|^2 + |vecb|^2 + |vecc|^2 + 2(veca.vecb + vecb.vecc + vecc.veca)` = 0
⇒ `(3)^2 + (5)^2 + (4)^2 + 2(veca.vecb + vecb.vecc + vecc.veca)` = 0
⇒ `9 + 25 + 16 + 2(veca.vecb + vecb.vecc + vecc.veca)` = 0
⇒ `50 + 2(veca.vecb + vecb.vecc + vecc.veca)` = 0
⇒ `veca.vecb + vecb.vecc + vecc.veca` = –25
APPEARS IN
RELATED QUESTIONS
Find the unit vector in the direction of the vector `veca = hati + hatj + 2hatk`.
Find the unit vector in the direction of vector `vec(PQ)`, where P and Q are the points (1, 2, 3) and (4, 5, 6), respectively.
If `vec"a", vec"b", vec"c"` are three vectors such that `vec"a" + vec"b" + vec"a" = vec0` and `|vec"a"|` = 2, `|vec"b"|` = 3, `|vec"c"|` = 5, then value of `vec"a"*vec"b" + vec"b"*vec"c" + vec"c"*vec"a"` is ______.
If `|vec"a"| = |vec"b"|`, then necessarily it implies `vec"a" = +- vec"b"`.
If `veca, vecb, vecc` are three vectors such that `veca.vecb = veca.vecc` and `veca xx vecb = veca xx vecc, veca ≠ 0`, then show that `vecb = vecc`.