Advertisements
Advertisements
Question
The value of λ for which the vectors `3hat"i" - 6hat"j" + hat"k"` and `2hat"i" - 4hat"j" + lambdahat"k"` are parallel is ______.
Options
`2/3`
`3/2`
`5/2`
`2/5`
Solution
The value of λ for which the vectors `3hat"i" - 6hat"j" + hat"k"` and `2hat"i" - 4hat"j" + lambdahat"k"` are parallel is `2/3`.
Explanation:
Let `vec"a" = 3hat"i" - 6hat"j" + hat"k"`
`vec"b" = 2hat"i" - 4hat"j" + lambdahat"k"`
Since the given vectors are parallel,
∴ Angle between them is 0°
So `vec"a"*vec"b" = |vec"a"||vec"b"| cos 0`
⇒ `(3hat"i" - 6hat"j" + hat"k")*(2hat"i" - 4hat"j" + lambdahat"k") = |3hat"i" - 6hat"j" + hat"k"| |2hat"i" - 4hat"j" + lambdahat"k"|`
`6 + 24 + lambda = sqrt(9 + 36 + 1) * sqrt(4 + 16 + lambda^2)`
`30 + lambda = sqrt(46) * sqrt(20 + lambda^2)`
Squaring both sides, we get
900 + λ2 + 60λ = 46(20 + λ2)
⇒ 900 + λ2 + 60λ = 920 + 46λ2
⇒ λ2 – 46λ2 + 60λ + 900 – 920 = 0
⇒ – 45λ2 + 60λ – 20 = 0
⇒ 9λ2 – 12λ + 4 = 0
⇒ (3λ – 2)2 = 0
⇒ 3λ – 2 = 0
⇒ 3λ = 2
∴ λ = `2/3`
Alternate method:
Let `vec"a" = "a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k"`
And `vec"b" = "b"_1hat"i" + "b"_2hat"j" + "b"_3hat"k"`
If `vec"a" | | vec"b"`
∴ `"a"_1/"b"_1 = "a"_2/"b"_2 = "a"_3/"b"_3`
⇒ `3/2 = (-6)/(-4) = 1/lambda`
⇒ `1/lambda = 3/2`
⇒ λ = `2/3`
APPEARS IN
RELATED QUESTIONS
If a unit vector `veca` makes angles `pi/3` with `hati,pi/4` with `hatj` and acute angles θ with ` hatk,` then find the value of θ.
Write the value of `vec a .(vecb xxveca)`
If `veca=hati+2hatj-hatk, vecb=2hati+hatj+hatk and vecc=5hati-4hatj+3hatk` then find the value of `(veca+vecb).vec c`
If `veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk` ,then find ` |veca xx vecb|`
Find x such that the four points A(4, 1, 2), B(5, x, 6) , C(5, 1, -1) and D(7, 4, 0) are coplanar.
if `|vecaxxvecb|^2+|veca.vecb|^2=400 ` and `|vec a| = 5` , then write the value of `|vecb|`
If `vecr=xhati+yhatj+zhatk` ,find `(vecrxxhati).(vecrxxhatj)+xy`
Using vectors find the area of triangle ABC with vertices A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1).
Find the angle between the vectors `vec"a" + vec"b" and vec"a" -vec"b" if vec"a" = 2hat"i"-hat"j"+3hat"k" and vec"b" = 3hat"i" + hat"j"-2hat"k", and"hence find a vector perpendicular to both" vec"a" + vec"b" and vec"a" - vec"b"`.
Find the angle between the vectors `2hat"i" - hat"j" + hat"k"` and `3hat"i" + 4hat"j" - hat"k"`.
Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, – 1, 4) and C(4, 5, – 1).
Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.
Show that area of the parallelogram whose diagonals are given by `vec"a"` and `vec"b"` is `(|vec"a" xx vec"b"|)/2`. Also find the area of the parallelogram whose diagonals are `2hat"i" - hat"j" + hat"k"` and `hat"i" + 3hat"j" - hat"k"`.
If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`, find a vector `vec"c"` such that `vec"a" xx vec"c" = vec"b"` and `vec"a"*vec"c"` = 3.
For any vector `vec"a"`, the value of `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` is equal to ______.
The vectors `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` and `2hat"i" - hat"j" + lambdahat"k"` are coplanar if ______.
If `|vec"a"|` = 4 and −3 ≤ λ ≤ 2, then the range of `|lambdavec"a"|` is ______.
The value of the expression `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` is ______.
If `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 and `|vec"a"|` = 4, then `|vec"b"|` is equal to ______.