English

The value of λ for which the vectors ijk3i^-6j^+k^ and ijk2i^-4j^+λk^ are parallel is ______. - Mathematics

Advertisements
Advertisements

Question

The value of λ for which the vectors `3hat"i" - 6hat"j" + hat"k"` and `2hat"i" - 4hat"j" + lambdahat"k"` are parallel is ______.

Options

  • `2/3`

  • `3/2`

  • `5/2`

  • `2/5`

MCQ
Fill in the Blanks

Solution

The value of λ for which the vectors `3hat"i" - 6hat"j" + hat"k"` and `2hat"i" - 4hat"j" + lambdahat"k"` are parallel is `2/3`.

Explanation:

Let `vec"a" = 3hat"i" - 6hat"j" + hat"k"`

`vec"b" = 2hat"i" - 4hat"j" + lambdahat"k"`

Since the given vectors are parallel,

∴ Angle between them is 0°

So `vec"a"*vec"b" = |vec"a"||vec"b"| cos 0`

⇒ `(3hat"i" - 6hat"j" + hat"k")*(2hat"i" - 4hat"j" + lambdahat"k") = |3hat"i" - 6hat"j" + hat"k"| |2hat"i" - 4hat"j" + lambdahat"k"|`

`6 + 24 + lambda = sqrt(9 + 36 + 1) * sqrt(4 + 16 + lambda^2)`

`30 + lambda = sqrt(46) * sqrt(20 + lambda^2)`

Squaring both sides, we get

900 + λ2 + 60λ = 46(20 + λ2)

⇒ 900 + λ2 + 60λ = 920 + 46λ2

⇒ λ2 – 46λ2 + 60λ + 900 – 920 = 0

⇒ – 45λ2 + 60λ – 20 = 0

⇒ 9λ2 – 12λ + 4 = 0

⇒ (3λ – 2)2 = 0

⇒ 3λ – 2 = 0

⇒ 3λ = 2

∴  λ = `2/3`

Alternate method:

Let `vec"a" = "a"_1hat"i" + "a"_2hat"j" + "a"_3hat"k"` 

And `vec"b" = "b"_1hat"i" + "b"_2hat"j" + "b"_3hat"k"`

If `vec"a" | | vec"b"`

∴ `"a"_1/"b"_1 = "a"_2/"b"_2 = "a"_3/"b"_3`

⇒ `3/2 = (-6)/(-4) = 1/lambda`

⇒ `1/lambda = 3/2`

⇒ λ = `2/3`

shaalaa.com
Vectors Examples and Solutions
  Is there an error in this question or solution?
Chapter 10: Vector Algebra - Exercise [Page 217]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 10 Vector Algebra
Exercise | Q 24 | Page 217

RELATED QUESTIONS

If a unit vector `veca` makes angles `pi/3` with `hati,pi/4` with `hatj` and acute angles θ with ` hatk,` then find the value of θ.


Write the value of `vec a .(vecb xxveca)`


If `veca=hati+2hatj-hatk, vecb=2hati+hatj+hatk and vecc=5hati-4hatj+3hatk` then find the value of `(veca+vecb).vec c`


 

If `veca=2hati+hatj+3hatk and vecb=3hati+5hatj-2hatk` ,then find ` |veca xx vecb|`

 

Find x such that the four points A(4, 1, 2), B(5, x, 6) , C(5, 1, -1) and D(7, 4, 0) are coplanar.


if `|vecaxxvecb|^2+|veca.vecb|^2=400 ` and `|vec a| = 5` , then write the value of `|vecb|`


If `vecr=xhati+yhatj+zhatk` ,find `(vecrxxhati).(vecrxxhatj)+xy`


Using vectors find the area of triangle ABC with vertices A(1, 2, 3), B(2, −1, 4) and C(4, 5, −1).


Find the angle between the vectors `vec"a" + vec"b" and  vec"a" -vec"b" if  vec"a" = 2hat"i"-hat"j"+3hat"k" and vec"b" = 3hat"i" + hat"j"-2hat"k", and"hence find a vector perpendicular to both"  vec"a" + vec"b" and vec"a" - vec"b"`.


Find the angle between the vectors `2hat"i" - hat"j" + hat"k"` and `3hat"i" + 4hat"j" - hat"k"`.


Using vectors, find the area of the triangle ABC with vertices A(1, 2, 3), B(2, – 1, 4) and C(4, 5, – 1).


Using vectors, prove that the parallelogram on the same base and between the same parallels are equal in area.


Show that area of the parallelogram whose diagonals are given by `vec"a"` and `vec"b"` is `(|vec"a" xx vec"b"|)/2`. Also find the area of the parallelogram whose diagonals are `2hat"i" - hat"j" + hat"k"` and `hat"i" + 3hat"j" - hat"k"`.


If `vec"a" = hat"i" + hat"j" + hat"k"` and `vec"b" = hat"j" - hat"k"`, find a vector `vec"c"` such that `vec"a" xx vec"c" = vec"b"` and `vec"a"*vec"c"` = 3.


For any vector `vec"a"`, the value of `(vec"a" xx hat"i")^2 + (vec"a" xx hat"j")^2 + (vec"a" xx hat"k")^2` is equal to ______.


The vectors `lambdahat"i" + hat"j" + 2hat"k", hat"i" + lambdahat"j" - hat"k"` and `2hat"i" - hat"j" + lambdahat"k"` are coplanar if ______.


If `|vec"a"|` = 4 and −3 ≤ λ ≤ 2, then the range of `|lambdavec"a"|` is ______.


The value of the expression `|vec"a" xx vec"b"|^2 + (vec"a".vec"b")^2` is ______.


If `|vec"a" xx vec"b"|^2 + |vec"a".vec"b"|^2` = 144 and `|vec"a"|` = 4, then `|vec"b"|` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×