हिंदी

Evaluate the Following: `Cos^-1{Cos (13pi)/6}` - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate the following:

`cos^-1{cos  (13pi)/6}`

उत्तर

We know

`cos^-1(costheta)=thetaif 0<=theta<=pi`

We have

`cos^-1{cos  (13pi)/6}=cos^-1{cos(2pi+pi/6)}`

`= cos^-1{cos(pi/6)}`

`=pi/6`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.07 [पृष्ठ ४२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 2.4 | पृष्ठ ४२

वीडियो ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्न

If `cos^-1( x/a) +cos^-1 (y/b)=alpha` , prove that `x^2/a^2-2(xy)/(ab) cos alpha +y^2/b^2=sin^2alpha`


Solve the following for x:

`sin^(-1)(1-x)-2sin^-1 x=pi/2`


 

Show that:

`2 sin^-1 (3/5)-tan^-1 (17/31)=pi/4`

 

 

If tan-1x+tan-1y=π/4,xy<1, then write the value of x+y+xy.


If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,`  find the value of x2 + y2 + z2 


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


​Find the principal values of the following:
`cos^-1(-sqrt3/2)`


​Find the principal values of the following:

`cos^-1(sin   (4pi)/3)`


`sin^-1(sin  pi/6)`


`sin^-1(sin  (7pi)/6)`


Evaluate the following:

`cos^-1(cos3)`


Evaluate the following:

`sec^-1(sec  (2pi)/3)`


Evaluate the following:

`sec^-1(sec  (7pi)/3)`


Evaluate the following:

`sec^-1{sec  (-(7pi)/3)}`


Evaluate the following:

`cosec^-1(cosec  (6pi)/5)`


Evaluate the following:

`cot^-1(cot  pi/3)`


Write the following in the simplest form:

`tan^-1{(sqrt(1+x^2)+1)/x},x !=0`


Write the following in the simplest form:

`sin{2tan^-1sqrt((1-x)/(1+x))}`


Evaluate the following:

`sin(cos^-1  5/13)`


Prove the following result-

`tan^-1  63/16 = sin^-1  5/13 + cos^-1  3/5`


Evaluate:

`sin(tan^-1x+tan^-1  1/x)` for x > 0


If `cot(cos^-1  3/5+sin^-1x)=0`, find the values of x.


Prove the following result:

`tan^-1  1/7+tan^-1  1/13=tan^-1  2/9`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Find the value of the following:

`tan^-1{2cos(2sin^-1  1/2)}`


Write the difference between maximum and minimum values of  sin−1 x for x ∈ [− 1, 1].


Write the value ofWrite the value of \[2 \sin^{- 1} \frac{1}{2} + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the value of \[\tan^{- 1} \frac{a}{b} - \tan^{- 1} \left( \frac{a - b}{a + b} \right)\]


Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]


Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]


Write the principal value of \[\cos^{- 1} \left( \cos680^\circ  \right)\]


Write the value of \[\sec^{- 1} \left( \frac{1}{2} \right)\]


If α = \[\tan^{- 1} \left( \frac{\sqrt{3}x}{2y - x} \right), \beta = \tan^{- 1} \left( \frac{2x - y}{\sqrt{3}y} \right),\] 
 then α − β =


Let f (x) = `e^(cos^-1){sin(x+pi/3}.`
Then, f (8π/9) = 


In a ∆ ABC, if C is a right angle, then
\[\tan^{- 1} \left( \frac{a}{b + c} \right) + \tan^{- 1} \left( \frac{b}{c + a} \right) =\]

 

 


If x = a (2θ – sin 2θ) and y = a (1 – cos 2θ), find \[\frac{dy}{dx}\] When  \[\theta = \frac{\pi}{3}\] .


Prove that : \[\cot^{- 1} \frac{\sqrt{1 + \sin x} + \sqrt{1 - \sin x}}{\sqrt{1 + \sin x} - \sqrt{1 - \sin x}} = \frac{x}{2}, 0 < x < \frac{\pi}{2}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×