Advertisements
Advertisements
Question
If `sin^-1 x + sin^-1 y+sin^-1 z+sin^-1 t=2pi` , then find the value of x2 + y2 + z2 + t2
Solution
We know that the maximum value of sin-1 x, sin-1 y, sin-1 z and sin-1 t is `pi/2`
Now,
LHS = `sin^-1 x+sin^-1y+sin^-1z+sin^-1t`
`=pi/2+pi/2+pi/2+pi/2`
= 2 π = RHS
Now,
`sin^-1x=pi/2,sin^-1y=pi/2,sin^-1z=pi/2` and `sin^-1t=pi/2`
⇒ `x = sin x/2,y=sin pi/2, z=sin pi/2 and t=sin pi/2`
⇒ x = 1, y = 1, z = 1, and t = 1
∴ x2 + y2 + z2 + t2 = 1 + 1 + 1 + 1 = 4
APPEARS IN
RELATED QUESTIONS
If `tan^-1((x-1)/(x-2))+cot^-1((x+2)/(x+1))=pi/4; `
Show that:
`cos^(-1)(4/5)+cos^(-1)(12/13)=cos^(-1)(33/65)`
Find the principal values of `sin^(-1) (-1/2)`
Find the principal value of `sec^(-1) (2/sqrt(3))`
`tan^(-1) sqrt3 - sec^(-1)(-2)` is equal to ______.
Find the principal value of `sin^-1(1/sqrt2)`
Find the domain of the following function:
`f(x) = sin^-1x + sinx`
Find the domain of the following function:
`f(x)=sin^-1x+sin^-1 2x`
Evaluate the following:
`tan^-1(-1/sqrt3)+tan^-1(-sqrt3)+tan^-1(sin(-pi/2))`
Find the domain of `f(x)=cotx+cot^-1x`
Evaluate the following:
`\text(cosec)^-1(-2/sqrt3)+2cot^-1(-1)`
In ΔABC, if a = 18, b = 24, c = 30 then find the values of tan `A/2`
Prove the following:
`sin^-1(3/5) + cos^-1(12/13) = sin^-1(56/65)`
Prove the following:
`tan^-1(1/2) + tan^-1(1/3) = pi/(4)`
In ΔABC, prove the following:
`(cos A)/a + (cos B)/b + (cos C)/c = (a^2 + b^2 + c^2)/(2abc)`
Solve `tan^-1 2x + tan^-1 3x = pi/4`
`sin^-1x + sin^-1 1/x + cos^-1x + cos^-1 1/x` = ______
The principal value of `tan^{-1(sqrt3)}` is ______
The principal value of `sin^-1 (sin (3pi)/4)` is ______.
If sin `(sin^-1 1/3 + cos^-1 x) = 1`, then the value of x is ______.
`(sin^-1(-1/2) + tan^-1(-1/sqrt(3)))/(sec^-1 (-2/sqrt(3)) + cos^-1(1/sqrt(2))` = ______.
Show that `2tan^-1 (-3) = (-pi)/2 + tan^-1 ((-4)/3)`
Prove that `tan^-1 1/4 + tan^-1 2/9 = sin^-1 1/sqrt(5)`
`"sin"^-1 (-1/2)`
`"sin"^-1 (1/sqrt2)`
`2 "tan"^-1 ("cos x") = "tan"^-1 (2 "cosec x")`
The number of solutions of sin–1x + sin–1(1 – x) = cos–1x is
If `(-1)/sqrt(2) ≤ x ≤ 1/sqrt(2)` then `sin^-1 (2xsqrt(1 - x^2))` is equal to
Domain and Rariges of cos–1 is:-
Find the principal value of `tan^-1 (sqrt(3))`
Values of tan–1 – sec–1(–2) is equal to
what is the value of `cos^-1 (cos (13pi)/6)`
What is the values of `cos^-1 (cos (7pi)/6)`
If `sin(sin^-1 1/5 + cos^-1 x) = 1`, the what will be the value of x?
If ax + b (sec (tan–1 x)) = c and ay + b (sec.(tan–1 y)) = c, then `(x + y)/(1 - xy)` = ______.
The value of cos (2cos–1 x + sin–1 x) at x = `1/5` is ______.
Find the value of `cos(x/2)`, if tan x = `5/12` and x lies in third quadrant.
The value of `tan(cos^-1 4/5 + tan^-1 2/3)` is ______.