English

Write the Following in the Simplest Form: `Cot^-1 A/Sqrt(X^2-a^2),| X | > A` - Mathematics

Advertisements
Advertisements

Question

Write the following in the simplest form:

`cot^-1  a/sqrt(x^2-a^2),|  x  | > a`

Solution

Let x = a sec θ

Now,

`cot^-1  a/sqrt(x^2-a^2)=cot^-1(a/sqrt(a^2sec^2theta-a^2))`

`=cot^-1  a/(asqrt(tan^2theta`

`=cot^-1(cottheta)`

= θ

`=sec^-1  x/a`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.07 [Page 43]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 4 Inverse Trigonometric Functions
Exercise 4.07 | Q 7.01 | Page 43

RELATED QUESTIONS

If a line makes angles 90° and 60° respectively with the positive directions of x and y axes, find the angle which it makes with the positive direction of z-axis.


Find the domain of definition of `f(x)=cos^-1(x^2-4)`


Find the domain of  `f(x) =2cos^-1 2x+sin^-1x.`


​Find the principal values of the following:

`cos^-1(-1/sqrt2)`


`sin^-1(sin2)`


Evaluate the following:

`tan^-1(tan4)`


Evaluate the following:

`sec^-1(sec  (9pi)/5)`


Evaluate the following:

`\text(cosec)^-1(\text{cosec}  pi/4)`


Evaluate the following:

`sin(tan^-1  24/7)`


Prove the following result

`tan(cos^-1  4/5+tan^-1  2/3)=17/6`


Prove the following result

`sin(cos^-1  3/5+sin^-1  5/13)=63/65`


Solve: `cos(sin^-1x)=1/6`


Evaluate:

`cos{sin^-1(-7/25)}`


If `(sin^-1x)^2+(cos^-1x)^2=(17pi^2)/36,`  Find x


Solve the following equation for x:

 cot−1x − cot−1(x + 2) =`pi/12`, > 0


Solve the following equation for x:

`tan^-1(2+x)+tan^-1(2-x)=tan^-1  2/3, where  x< -sqrt3 or, x>sqrt3`


Evaluate the following:

`tan{2tan^-1  1/5-pi/4}`


Evaluate the following:

`sin(2tan^-1  2/3)+cos(tan^-1sqrt3)`


`tan^-1  1/4+tan^-1  2/9=1/2cos^-1  3/2=1/2sin^-1(4/5)`


`2tan^-1  3/4-tan^-1  17/31=pi/4`


`4tan^-1  1/5-tan^-1  1/239=pi/4`


Solve the following equation for x:

`2tan^-1(sinx)=tan^-1(2sinx),x!=pi/2`


Solve the following equation for x:

`tan^-1((x-2)/(x-1))+tan^-1((x+2)/(x+1))=pi/4`


Write the value of cos−1 \[\left( \tan\frac{3\pi}{4} \right)\]


Write the value of cos1 (cos 350°) − sin−1 (sin 350°)


Write the value of \[\sin^{- 1} \left( \frac{1}{3} \right) - \cos^{- 1} \left( - \frac{1}{3} \right)\]


The set of values of `\text(cosec)^-1(sqrt3/2)`


sin\[\left[ \cot^{- 1} \left\{ \tan\left( \cos^{- 1} x \right) \right\} \right]\]  is equal to

 

 

If α = \[\tan^{- 1} \left( \tan\frac{5\pi}{4} \right) \text{ and }\beta = \tan^{- 1} \left( - \tan\frac{2\pi}{3} \right)\] , then

 

If tan−1 3 + tan−1 x = tan−1 8, then x =


If \[\cos^{- 1} x > \sin^{- 1} x\], then


\[\cot\left( \frac{\pi}{4} - 2 \cot^{- 1} 3 \right) =\] 

 


If tan−1 (cot θ) = 2 θ, then θ =

 


The domain of  \[\cos^{- 1} \left( x^2 - 4 \right)\] is

 


Find the domain of `sec^(-1)(3x-1)`.


tanx is periodic with period ____________.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×