Advertisements
Advertisements
प्रश्न
If \[\tan^{- 1} \left( \frac{1}{1 + 1 . 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 . 3} \right) + . . . + \tan^{- 1} \left( \frac{1}{1 + n . \left( n + 1 \right)} \right) = \tan^{- 1} \theta\] , then find the value of θ.
उत्तर
\[\tan^{- 1} \left( \frac{1}{1 + 1 \times 2} \right) + \tan^{- 1} \left( \frac{1}{1 + 2 \times 3} \right) + . . . + \tan^{- 1} \left[ \frac{1}{1 + n \times \left( n + 1 \right)} \right] = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left( \frac{2 - 1}{1 + 1 \times 2} \right) + \tan^{- 1} \left( \frac{3 - 2}{1 + 2 \times 3} \right) + . . . + \tan^{- 1} \left[ \frac{\left( n + 1 \right) - n}{1 + n \times \left( n + 1 \right)} \right] = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left( 2 \right) - \tan^{- 1} \left( 1 \right) + \tan^{- 1} \left( 3 \right) - \tan^{- 1} \left( 2 \right) + . . . + \tan^{- 1} \left( n + 1 \right) - \tan^{- 1} \left( n \right) = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left( n + 1 \right) - \tan^{- 1} \left( 1 \right) = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left[ \frac{\left( n + 1 \right) - 1}{1 + \left( n + 1 \right) \times 1} \right] = \tan^{- 1} \theta\]
\[ \Rightarrow \tan^{- 1} \left( \frac{n}{n + 2} \right) = \tan^{- 1} \theta\]
\[ \Rightarrow \theta = \frac{n}{n + 2}\]
Thus, the value of θ is \[\frac{n}{n + 2}\] .
APPEARS IN
संबंधित प्रश्न
Prove that :
`2 tan^-1 (sqrt((a-b)/(a+b))tan(x/2))=cos^-1 ((a cos x+b)/(a+b cosx))`
If `(sin^-1x)^2 + (sin^-1y)^2+(sin^-1z)^2=3/4pi^2,` find the value of x2 + y2 + z2
`sin^-1(sin (13pi)/7)`
`sin^-1{(sin - (17pi)/8)}`
Evaluate the following:
`cos^-1{cos (13pi)/6}`
Evaluate the following:
`tan^-1(tan2)`
Write the following in the simplest form:
`tan^-1{x+sqrt(1+x^2)},x in R `
Evaluate:
`sin(tan^-1x+tan^-1 1/x)` for x < 0
Solve the following:
`sin^-1x+sin^-1 2x=pi/3`
Solve the equation `cos^-1 a/x-cos^-1 b/x=cos^-1 1/b-cos^-1 1/a`
`tan^-1 1/4+tan^-1 2/9=1/2cos^-1 3/2=1/2sin^-1(4/5)`
Solve the following equation for x:
`cos^-1((x^2-1)/(x^2+1))+1/2tan^-1((2x)/(1-x^2))=(2x)/3`
For any a, b, x, y > 0, prove that:
`2/3tan^-1((3ab^2-a^3)/(b^3-3a^2b))+2/3tan^-1((3xy^2-x^3)/(y^3-3x^2y))=tan^-1 (2alphabeta)/(alpha^2-beta^2)`
`where alpha =-ax+by, beta=bx+ay`
If x < 0, then write the value of cos−1 `((1-x^2)/(1+x^2))` in terms of tan−1 x.
Show that \[\sin^{- 1} (2x\sqrt{1 - x^2}) = 2 \sin^{- 1} x\]
If \[\tan^{- 1} (\sqrt{3}) + \cot^{- 1} x = \frac{\pi}{2},\] find x.
Write the principal value of `sin^-1(-1/2)`
Write the principal value of \[\tan^{- 1} 1 + \cos^{- 1} \left( - \frac{1}{2} \right)\]
Write the value of \[\cos\left( \sin^{- 1} x + \cos^{- 1} x \right), \left| x \right| \leq 1\]
Wnte the value of the expression \[\tan\left( \frac{\sin^{- 1} x + \cos^{- 1} x}{2} \right), \text { when } x = \frac{\sqrt{3}}{2}\]
If \[\cos\left( \tan^{- 1} x + \cot^{- 1} \sqrt{3} \right) = 0\] , find the value of x.
\[\text{ If } u = \cot^{- 1} \sqrt{\tan \theta} - \tan^{- 1} \sqrt{\tan \theta}\text{ then }, \tan\left( \frac{\pi}{4} - \frac{u}{2} \right) =\]
If \[3\sin^{- 1} \left( \frac{2x}{1 + x^2} \right) - 4 \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) + 2 \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) = \frac{\pi}{3}\] is equal to
The value of \[\sin\left( 2\left( \tan^{- 1} 0 . 75 \right) \right)\] is equal to
The value of \[\tan\left( \cos^{- 1} \frac{3}{5} + \tan^{- 1} \frac{1}{4} \right)\]
Find the value of x, if tan `[sec^(-1) (1/x) ] = sin ( tan^(-1) 2) , x > 0 `.
Find the real solutions of the equation
`tan^-1 sqrt(x(x + 1)) + sin^-1 sqrt(x^2 + x + 1) = pi/2`
Find the value of `sin^-1(cos((33π)/5))`.