Advertisements
Advertisements
प्रश्न
Prove that `sin^-1 8/17 + sin^-1 3/5 = sin^-1 7/85`
उत्तर
L.H.S. `sin^-1 8/17 + sin^-1 3/5`
Using `sin^-1x +sin^-1y sin^-1[xsqrt(1 - y^2) + ysqrt(1 - x^2)]`
`sin^-1 8/17 + sin^-1 3/5 = sin^-1[8/17* sqrt(1 - (3/5)^2) + 3/5 * sqrt(1 (8/1)^2)]`
= `sin^-1[8/17 * sqrt(1 9/25) + 3/5* sqrt(1 - 64/289)]`
= `sin^-1 [8/17 * sqrt(16/25) + 3/5* sqrt(225/289)]`
= `sin^-1 [8/17 * 4/5 +3/5 * 15/17]`
= `sin-1 [32/85 + 45/85]`
=`sin^-1 77/85` R.H.S.
Hence proved.
APPEARS IN
संबंधित प्रश्न
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Evaluate tan (tan–1(– 4)).
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.
`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`
If 3 tan–1x + cot–1x = π, then x equals ______.
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
𝐴' Is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between ∠CAB and ∠CA'B is ______.
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`