हिंदी
तमिलनाडु बोर्ड ऑफ सेकेंडरी एज्युकेशनएचएससी विज्ञान कक्षा १२

Find the value of tan(sin-1 35+cot-1 32) - Mathematics

Advertisements
Advertisements

प्रश्न

Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`

योग

उत्तर

Let α = `sin^-1 (3/5)`

⇒ sin α = `3/5`

1 – sin2α = `1 - 9/25 = 16/25`

cos2α = `16/25`

⇒ cos α = `4/5`

tan α = `(3/5)/(4/5) = 3/4`

α = `tan^-1 (3/4)`

⇒ `sin^-1 (3/5) = tan^-1(3/4)`

⇒ `tan[sin^-1 (3/5) + cot^-1 (3/2)]`

= `tan[tan^-1  3/4 + tan^-1  2/3]`

= `tan[tan^-1 ((3/4 + 2/3)/(1 - 3/4 xx 2/3))]`

= `tan [tan^-1  (17/12)/(6/12)]`

= `tan[tan^-1 (17/6)]`

= `17/6`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 4: Inverse Trigonometric Functions - Exercise 4.5 [पृष्ठ १६६]

APPEARS IN

सामाचीर कलवी Mathematics - Volume 1 and 2 [English] Class 12 TN Board
अध्याय 4 Inverse Trigonometric Functions
Exercise 4.5 | Q 3. (iii) | पृष्ठ १६६

संबंधित प्रश्न

 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

Prove the following:

`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`


Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


sin (tan–1 x), | x| < 1 is equal to ______.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Prove that `tan^-1  2/11 + tan^-1  7/24 = tan^-1  1/2`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


The value of sin (2tan-1 (0.75)) is equal to ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×