Advertisements
Advertisements
प्रश्न
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
उत्तर
Let α = `sin^-1 (3/5)`
⇒ sin α = `3/5`
1 – sin2α = `1 - 9/25 = 16/25`
cos2α = `16/25`
⇒ cos α = `4/5`
tan α = `(3/5)/(4/5) = 3/4`
α = `tan^-1 (3/4)`
⇒ `sin^-1 (3/5) = tan^-1(3/4)`
⇒ `tan[sin^-1 (3/5) + cot^-1 (3/2)]`
= `tan[tan^-1 3/4 + tan^-1 2/3]`
= `tan[tan^-1 ((3/4 + 2/3)/(1 - 3/4 xx 2/3))]`
= `tan [tan^-1 (17/12)/(6/12)]`
= `tan[tan^-1 (17/6)]`
= `17/6`
APPEARS IN
संबंधित प्रश्न
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The value of sin (2tan-1 (0.75)) is equal to ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0