Advertisements
Advertisements
प्रश्न
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
उत्तर
`tan^-1"A" + tan^-1"B" = tan^-1 (("A" + "B")/(1 - "AB"))`
`tan^-1 (2/11) + tan^-1 (7/24) = tan^-1 ((2/11 + 7/24)/(1- 2/11 * 7/24))`
= `tan^-1 (((48 + 77)/(11 xxx 24))/((264 - 14)/(11 xx 24)))`
= `tan^-1 (125/250)`
= `tan^-1(1/2)`
APPEARS IN
संबंधित प्रश्न
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Evaluate `tan^-1(sin((-pi)/2))`.
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`"tan"^-1 (sqrt3)`
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
`tan^-1 1/2 + tan^-1 2/11` is equal to
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.