Advertisements
Advertisements
Question
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Solution
`tan^-1"A" + tan^-1"B" = tan^-1 (("A" + "B")/(1 - "AB"))`
`tan^-1 (2/11) + tan^-1 (7/24) = tan^-1 ((2/11 + 7/24)/(1- 2/11 * 7/24))`
= `tan^-1 (((48 + 77)/(11 xxx 24))/((264 - 14)/(11 xx 24)))`
= `tan^-1 (125/250)`
= `tan^-1(1/2)`
APPEARS IN
RELATED QUESTIONS
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
The minimum value of sinx - cosx is ____________.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
Find the value of `sin^-1 [sin((13π)/7)]`
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`