English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Prove that tan-1 211+tan-1 724=tan-1 12 - Mathematics

Advertisements
Advertisements

Question

Prove that `tan^-1  2/11 + tan^-1  7/24 = tan^-1  1/2`

Sum

Solution

`tan^-1"A" + tan^-1"B" = tan^-1 (("A" + "B")/(1 - "AB"))`

`tan^-1 (2/11) + tan^-1 (7/24) = tan^-1 ((2/11 + 7/24)/(1- 2/11 * 7/24))`

= `tan^-1  (((48 + 77)/(11 xxx 24))/((264 - 14)/(11 xx 24)))`

= `tan^-1 (125/250)`

= `tan^-1(1/2)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.5 [Page 166]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 4 Inverse Trigonometric Functions
Exercise 4.5 | Q 4. (i) | Page 166

RELATED QUESTIONS

Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`


Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Find the value of the given expression.

`tan(sin^(-1)  3/5 + cot^(-1)  3/2)`


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


The minimum value of sinx - cosx is ____________.


If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of  `"sec" theta + "tan" theta` is ____________.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.


If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


The value of `tan^-1 (x/y) - tan^-1  (x - y)/(x + y)` is equal to


Find the value of `sin^-1 [sin((13π)/7)]`


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×