English

Solve for x: πsin-1(x2)+cos-1x=π6 - Mathematics

Advertisements
Advertisements

Question

Solve for x: sin-1(x2)+cos-1x=π6

Sum

Solution

sin-1(x2)+cos-1x=π6

Since, sin-1x+cos-1x=π2

sin-1(x2)+π2-sin-1x=π6

-sin-1x+sin-1 x2=π6-π2

-sin-1x+sin-1 x2=2π-6π12

-sin-1x+sin-1 x2=-π3

sin-1 x2=-π3+sin-1x

x2=sin(-π3+sin-1x)

x2=sin(-π3)cos(sin-1x)+cos(-π3)sin(sin-1x)

x2=-sin π3coscos-11-x2+cos(π3)x

x2=-321-x2+x2

0=-321-x2

1 – x2 = 0

x2 = 1

∴ x = 1 is the only answer because x = – 1 will not satisfy above question.

shaalaa.com
  Is there an error in this question or solution?
2023-2024 (February) Official

RELATED QUESTIONS

Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x


 

Prove that:

tan-115+tan-117+tan-113+tan-118=π4

 

If tan-1(2x)+tan-1(3x)=π4, then find the value of ‘x’.


Write the following function in the simplest form:

tan-1 xa2-x2, |x| < a


Prove 9π8-94 sin-1 13=94sin-1 223


Prove that tan{π4+12cos-1 ab}+tan{π4-12cos-1 ab}=2ba


If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.


Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Find the value of sin-1[cos(sin-1(32))]


Prove that sin-1 35-cos-1 1213=sin-1 1665


Prove that tan-1x+tan-1 2x1-x2=tan-1 3x-x31-3x2,|x|<13


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Evaluate cos[sin-1 14+sec-1 43]


Prove that 2sin-1 35-tan-1 1731=π4


Evaluate cos[cos-1(-32)+π6]


Prove that tan-1(1+x2+1-x2(1+x2)-1-x2)=π2+12cos-1x2


If sin-1(2a1+a2)+cos-1(1-a21+a2)=tan-1(2x1-x2). where a, x ∈ ] 0, 1, then the value of x is ______.


The value of the expression tan(12cos-1 25) is ______.


The value of tan-1(12)+tan-1(13)+tan-1(78) is ____________.


If tan-1(cot θ)=2θ,then θ is equal to ____________.


cot(π4-2 cot-1 3)= ____________.


tan-11+cos-1(-12)+sin-1(-12)


The value of sin (2tan-1 (0.75)) is equal to ____________.


cot(cosec-1 53+tan-1 23)= ____________.


tan-113+tan-115+tan-117+tan-118= ____________.


Find the value of tan-1[2cos(2sin-1 12)]+tan-11.


The value of cosec [sin-1(-12)]-sec[cos-1(-12)] is equal to ______.


If sin–1x + sin–1y + sin–1z = π, show that x2-y2-z2+2yz1-x2=0


Solve:

sin–1(x) + sin–1(1 – x) = cos–1x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×
Our website is made possible by ad-free subscriptions or displaying online advertisements to our visitors.
If you don't like ads you can support us by buying an ad-free subscription or please consider supporting us by disabling your ad blocker. Thank you.