Advertisements
Advertisements
Question
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
Options
`2 + sqrt(5)`
`sqrt(5) - 2`
`(sqrt(5) + 2)/2`
`5 + sqrt(2)`
Solution
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is `sqrt(5) - 2`.
Explanation:
We have, `tan (1/2 cos^-1 2/sqrt(5))`
Let θ = `1/2 cos^-1 2/sqrt(5)`
⇒ 2θ = `cos^-1 2/sqrt(5)`
⇒ cos 2θ = `2/sqrt(5)`
⇒ `(1 - tan^2 theta)/(1 + tan^2 theta) = 2/sqrt(5)` ......`[because cos 2theta = (1 - tan^2 theta)/(1 + tan^2 theta)]`
⇒ `2 + 2 tan^2 theta = sqrt(5) - sqrt(5) tan^2 theta`
⇒ `sqrt(5) tan^2 theta + 2 tan^2 theta = sqrt(5) - 2`
⇒ `(sqrt(5) + 2) tan^2 theta = sqrt(5) - 2`
⇒ tan2θ = `((sqrt(5) - 2)(sqrt(5) - 2))/((sqrt(5) + 2)(sqrt(5) - 2))`
⇒ tan2θ = `(sqrt(5) - 2)^2/(5 - 4)`
⇒ tan2θ = `+- (sqrt(5) - 2)`
⇒ tan2θ = `sqrt(5) - 2, [-(sqrt(5) - 2) "is not required"]`
APPEARS IN
RELATED QUESTIONS
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
`cos^(-1) (cos (7pi)/6)` is equal to ______.
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
If 3 tan–1x + cot–1x = π, then x equals ______.
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
The minimum value of sinx - cosx is ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`