English

The value of the expression tan(12cos-1 25) is ______. - Mathematics

Advertisements
Advertisements

Question

The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.

Options

  • `2 + sqrt(5)`

  • `sqrt(5) - 2`

  • `(sqrt(5) + 2)/2`

  • `5 + sqrt(2)`

MCQ
Fill in the Blanks

Solution

The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is `sqrt(5) - 2`.

Explanation:

We have, `tan (1/2 cos^-1  2/sqrt(5))` 

Let θ = `1/2 cos^-1  2/sqrt(5)`

⇒ 2θ = `cos^-1  2/sqrt(5)`

⇒ cos 2θ = `2/sqrt(5)`

⇒ `(1 - tan^2 theta)/(1 + tan^2 theta) = 2/sqrt(5)`  ......`[because cos 2theta = (1 - tan^2 theta)/(1 + tan^2 theta)]`

⇒ `2 + 2 tan^2 theta = sqrt(5) - sqrt(5) tan^2 theta`

⇒ `sqrt(5) tan^2 theta + 2 tan^2 theta = sqrt(5) - 2`

⇒ `(sqrt(5) + 2) tan^2 theta = sqrt(5) - 2`

⇒ tan2θ = `((sqrt(5) - 2)(sqrt(5) - 2))/((sqrt(5) + 2)(sqrt(5) - 2))` 

⇒ tan2θ = `(sqrt(5) - 2)^2/(5 - 4)`

⇒ tan2θ = `+- (sqrt(5) - 2)`

⇒ tan2θ = `sqrt(5) - 2, [-(sqrt(5) - 2) "is not required"]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise [Page 39]

APPEARS IN

NCERT Exemplar Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise | Q 33 | Page 39

RELATED QUESTIONS

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

Prove the following:

`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`


Prove the following: 

`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`


Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`


Show that `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?


If 3 tan–1x + cot–1x = π, then x equals ______.


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.


The minimum value of sinx - cosx is ____________.


If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


If `3  "sin"^-1 ((2"x")/(1 + "x"^2)) - 4  "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-


What is the simplest form of `tan^-1  sqrt(1 - x^2 - 1)/x, x ≠ 0`


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×