English

Prove that: cos-1 45+cos-1 1213=cos-1 3365 - Mathematics

Advertisements
Advertisements

Question

Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`

Sum

Solution 1

Let `cos^(-1)  4/5 = x`. Then, `cos x = 4/5 => sin x = sqrt (1 - (4/5)^2) = 3/5`

`:. tan x =  3/4 => x =  tan^(-1)  3/4`

`:. cos^(-1)  4/5 =  tan^(-1)  3/4`   ...(1)

Now let `cos^(-1)  12/13 = y` Then `cos y= 12/13 => sin y = 5/13`

`:. tan y = 5/12 => y = tan^(-1)  5/12`

`:. cos^(-1)  12/13 = tan^(-1)  5/12  --- 2`

Let `cos^(-1)  33/65 = z`. Then `cos z = 33/65 => sin z = 56/65`

`:. tan z = 56/33 => z = tan^(-1)  56/33`

`:. cos^(-1)  33/65 = tan^(-1)  56/33`  ....(3)

Now, we will prove that:

L.H.S = `cos^(-1)  4/5 + cos^(-1)  12/13`

`= tan^(-1)  3/4 + tan^(-1)  5/12`   [Using 1 and 2]

= `tan^(-1)  (3/4 + 5/12)/(1 - 3/4 . 5/12)`     ` "    "       [tan^(-1) x + tan^(-1) y = tan^(-1)  (x + y)/(1-xy)]`

`= tan^(-1)  (36+20)/(48-15)`

`= tan^(-1)  56/33`

`= tan^(-1)  56/33`    [by(3)]

= R.H.S

shaalaa.com

Solution 2

`cos^-1  4/5 + cos^-1  12/13`

` = tan^-1  (sqrt(5^2 - 4^2))/4 + tan^-1  sqrt(13^2 - 12^2)/12`

= `tan^-1  3/4 + tan^-1  5/12`

= `tan^-1  ((5/12 + 3/4)/(1 - 5/12 xx 3/4))`    ...`[tan^-1x + tan^-1y = tan^-1((x + y)/(1 - x xx y))]`

= `tan^-1  (56/33)`

= `cos^-1  33/sqrt(56^2 + 33^2)`

= `cos^-1  33/65`

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise 2.3 [Page 51]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 5 | Page 51

RELATED QUESTIONS

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.


If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Find the value, if it exists. If not, give the reason for non-existence

`tan^-1(sin(- (5pi)/2))`


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`


Choose the correct alternative:

`tan^-1 (1/4) + tan^-1 (2/9)` is equal to


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Choose the correct alternative:

sin(tan–1x), |x| < 1 is equal to


Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`


Prove that cot–17 + cot–18 + cot–118 = cot–13


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


If 3 tan–1x + cot–1x = π, then x equals ______.


The maximum value of sinx + cosx is ____________.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.


The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.


`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


`"cos"^-1 1/2 + 2  "sin"^-1 1/2` is equal to ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


If `"sin"^-1 (1 - "x") - 2  "sin"^-1 ("x") = pi/2,` then x is equal to ____________.


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


`tan^-1  1/2 + tan^-1  2/11` is equal to


If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.


Solve:

sin–1(x) + sin–1(1 – x) = cos–1x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×