Advertisements
Advertisements
Question
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
Solution 1
Let `cos^(-1) 4/5 = x`. Then, `cos x = 4/5 => sin x = sqrt (1 - (4/5)^2) = 3/5`
`:. tan x = 3/4 => x = tan^(-1) 3/4`
`:. cos^(-1) 4/5 = tan^(-1) 3/4` ...(1)
Now let `cos^(-1) 12/13 = y` Then `cos y= 12/13 => sin y = 5/13`
`:. tan y = 5/12 => y = tan^(-1) 5/12`
`:. cos^(-1) 12/13 = tan^(-1) 5/12 --- 2`
Let `cos^(-1) 33/65 = z`. Then `cos z = 33/65 => sin z = 56/65`
`:. tan z = 56/33 => z = tan^(-1) 56/33`
`:. cos^(-1) 33/65 = tan^(-1) 56/33` ....(3)
Now, we will prove that:
L.H.S = `cos^(-1) 4/5 + cos^(-1) 12/13`
`= tan^(-1) 3/4 + tan^(-1) 5/12` [Using 1 and 2]
= `tan^(-1) (3/4 + 5/12)/(1 - 3/4 . 5/12)` ` " " [tan^(-1) x + tan^(-1) y = tan^(-1) (x + y)/(1-xy)]`
`= tan^(-1) (36+20)/(48-15)`
`= tan^(-1) 56/33`
`= tan^(-1) 56/33` [by(3)]
= R.H.S
Solution 2
`cos^-1 4/5 + cos^-1 12/13`
` = tan^-1 (sqrt(5^2 - 4^2))/4 + tan^-1 sqrt(13^2 - 12^2)/12`
= `tan^-1 3/4 + tan^-1 5/12`
= `tan^-1 ((5/12 + 3/4)/(1 - 5/12 xx 3/4))` ...`[tan^-1x + tan^-1y = tan^-1((x + y)/(1 - x xx y))]`
= `tan^-1 (56/33)`
= `cos^-1 33/sqrt(56^2 + 33^2)`
= `cos^-1 33/65`
APPEARS IN
RELATED QUESTIONS
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Choose the correct alternative:
`sin^-1 (tan pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Prove that `2sin^-1 3/5 - tan^-1 17/31 = pi/4`
Prove that cot–17 + cot–18 + cot–118 = cot–13
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
If 3 tan–1x + cot–1x = π, then x equals ______.
The maximum value of sinx + cosx is ____________.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
`tan^-1 1/2 + tan^-1 2/11` is equal to
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.