Advertisements
Advertisements
Question
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Options
`x/sqrt(1 - x^2)`
`1/sqrt(1 - x^2)`
`1/sqrt(1 + x^2)`
`x/sqrt(1 + x^2)`
Solution
`x/sqrt(1 + x^2)`
APPEARS IN
RELATED QUESTIONS
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
sin (tan–1 x), | x| < 1 is equal to ______.
Find: ∫ sin x · log cos x dx
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`