Advertisements
Advertisements
Question
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Solution
`tan^(-1) (tan (3pi)/4)`
We know that tan−1 (tan x) = x if x in `(-pi/2, pi/2)` which is the principal value branch of tan−1x.
Here `(3pi)/4 !in ((-pi)/2, pi/2)`
Now , `tan^(-1) (tan (3pi)/4)` can be witten as
`tan^(-1) (tan (3pi)/4) `
`= tan^(-1) [-tan ((-3pi)/4)]`
` = tan^(-1) [-tan(pi - pi/4)]`
`= tan^(-1) [-tan pi/4] `
`= tan^(-1) [tan(-pi/4)] " where " - pi/4 in ((-pi)/2, pi/2)`
`:. tan^(-1) (tan (3pi)/4)`
` = tan^(-1) [tan((-pi)/4)]`
` = (-pi)/4`
APPEARS IN
RELATED QUESTIONS
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Write the following function in the simplest form:
`tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
Prove that
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Evaluate `tan^-1(sin((-pi)/2))`.
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
The value of sin (2tan-1 (0.75)) is equal to ____________.
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
sin (tan−1 x), where |x| < 1, is equal to:
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
The value of `"tan"^-1 (3/4) + "tan"^-1 (1/7)` is ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`"cos"^-1 (1/2)`
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠DAB = ________.
Find the value of `sin^-1 [sin((13π)/7)]`
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`