Advertisements
Advertisements
Question
Prove that
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .
Solution
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + se c^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right)\]
= \[2 \tan^{- 1} \left( \frac{1}{5} \right) + \tan^{- 1} \left( \sqrt{\left( \frac{5\sqrt{2}}{7} \right)^2 - 1} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) \left[ \text { Using }se c^{- 1} x = \tan^{- 1} \sqrt{x^2 - 1} \right]\]
\[= 2 \tan^{- 1} \left( \frac{1}{5} \right) + \tan^{- 1} \left( \frac{1}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right)\]
= 2 \[\left( \tan^{- 1} \left( \frac{1}{5} \right) + \tan^{- 1} \left( \frac{1}{8} \right) \right) + \tan^{- 1} \left( \frac{1}{7} \right)\]
\[= 2 \tan^{- 1} \left( \frac{\frac{1}{5} + \frac{1}{8}}{1 - \frac{1}{5} \times \frac{1}{8}} \right) + \tan^{- 1} \left( \frac{1}{7} \right) \left[\text { Using} \tan^{- 1} x + \tan^{- 1} y = \tan^{- 1} \left( \frac{x + y}{1 - xy} \right) \right]\]
\[= 2 \tan^{- 1} \left( \frac{13}{39} \right) + \tan^{- 1} \left( \frac{1}{7} \right)\]
\[= 2 \tan^{- 1} \left( \frac{1}{3} \right) + \tan^{- 1} \left( \frac{1}{7} \right)\]
\[= \tan^{- 1} \left( \frac{\frac{2}{3}}{1 - \frac{1}{9}} \right) + \tan^{- 1} \left( \frac{1}{7} \right) \left[ \text { Using} 2 \tan^{- 1} x = \tan^{- 1} \frac{2x}{1 - x^2}, \text { if } \left| x \right| < 1 \right]\]
\[= \tan^{- 1} \left( \frac{3}{4} \right) + \tan^{- 1} \left( \frac{1}{7} \right)\]
\[= \tan^{- 1} \left( \frac{\frac{3}{4} + \frac{1}{7}}{1 - \frac{3}{4} \times \frac{1}{7}} \right)\]
\[= \tan^{- 1} \left( 1 \right)\]
\[ = \frac{\pi}{4}\]
\[ = RHS\]
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
sin (tan–1 x), | x| < 1 is equal to ______.
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
`"tan"^-1 (sqrt3)`
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Domain and Range of tan-1 x = ________.
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.