Advertisements
Advertisements
Question
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Solution
Given that
⇒ `tan^-1 ((2-"x")/(2+"x")) = (1)/(2) tan^-1 ("x")/(2)`
⇒ `2tan^-1 ((2-"x")/(2+"x")) = tan^-1 ("x")/(2)`
⇒ `tan^-1 (2((2-"x")/(2+"x")))/(1 - ((2-"x")/(2+"x"))^2) = tan^-1 ("x")/(2)`
⇒ `tan^-1 (4 - x^2)/(4x) = tan^-1 ("x")/(2)`
⇒ `(4 -"x"^2)/(4"x") = ("x")/(2)`
∴ `"x" = 2/sqrt3 ...[∵ "x" >0]`.
APPEARS IN
RELATED QUESTIONS
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove `tan^(-1) 1/5 + tan^(-1) (1/7) + tan^(-1) 1/3 + tan^(-1) 1/8 = pi/4`
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
sin (tan–1 x), | x| < 1 is equal to ______.
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
`"cos"^-1 1/2 + 2 "sin"^-1 1/2` is equal to ____________.
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.