Advertisements
Advertisements
Question
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Solution
`tan^(-1) (sqrt((1-cos x)/(1+ cos x))), x < pi`
`tan^(-1) (sqrt((1- cosx)/(1+ cosx))) `
`= tan^(-1) (sqrt((2sin^2 x/2)/(2cos^2 x/2)))`
`=tan^(-1) ((sin x/2)/(cos x/2)) `
`= tan^(-1) (tan x/2)`
`= x/2`
APPEARS IN
RELATED QUESTIONS
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove that:
`cot^(-1) ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)`
sin (tan–1 x), | x| < 1 is equal to ______.
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.
`"sin"^-1 (1/sqrt2)`
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠EAB = ________.
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
Find the value of `sin^-1 [sin((13π)/7)]`