Advertisements
Advertisements
Question
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Solution
`sin^-1 (cos pi) = sin^-1(- 1)`
= `- sin^-1 (1)`
= `- pi/2` ......[∵ cos π = – 1]
APPEARS IN
RELATED QUESTIONS
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Evaluate tan (tan–1(– 4)).
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
If 3 tan–1x + cot–1x = π, then x equals ______.
The minimum value of sinx - cosx is ____________.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"sin"^-1 ((-1)/2)`
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.