English
Tamil Nadu Board of Secondary EducationHSC Science Class 12

Find the value, if it exists. If not, give the reason for non-existence sin-1[sin5] - Mathematics

Advertisements
Advertisements

Question

Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`

Sum

Solution

`- pi/2 ≤ sin^-1 5 ≤ pi/2`

`- 3   pi/2 ≤ 5 ≤ 2pi`

`- pi/2 ≤ 5 - 2pi ≤ 0 ≤ pi/2`

sin(5 – 2π) = sin 5

sin–1(sin 5) = 5 – 2π

shaalaa.com
  Is there an error in this question or solution?
Chapter 4: Inverse Trigonometric Functions - Exercise 4.5 [Page 166]

APPEARS IN

Samacheer Kalvi Mathematics - Volume 1 and 2 [English] Class 12 TN Board
Chapter 4 Inverse Trigonometric Functions
Exercise 4.5 | Q 1. (iii) | Page 166

RELATED QUESTIONS

Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


Prove the following: 

`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of  `"sec" theta + "tan" theta` is ____________.


The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


The value of `tan^-1 (x/y) - tan^-1  (x - y)/(x + y)` is equal to


`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×