English

Sin–1 (1 – x) – 2 sin–1 x = π2 , then x is equal to ______. - Mathematics

Advertisements
Advertisements

Question

sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.

Options

  • `0, 1/2`

  • `1, 1/2`

  • 0

  • `1/2`

MCQ
Fill in the Blanks

Solution

sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to 0.

Explanation:

`sin^-1 (1 - x) - 2sin^-1 x = pi/2`

= `sin^-1 (1 - x) = pi/2 + 2 sin^-1 x`

= `1 - x = cos [cos^-1 (1 - 2x^2)]`

= `1 - x = 1- 2x^2`

= `2x^2 - x = 0`

= `x = 0, 1/2`

But `x = 1/2` does not satisfy the equation so, x = 0.

shaalaa.com
  Is there an error in this question or solution?
Chapter 2: Inverse Trigonometric Functions - Exercise 2.3 [Page 52]

APPEARS IN

NCERT Mathematics [English] Class 12
Chapter 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 16 | Page 52

RELATED QUESTIONS

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


Find the value of `cot(tan^(-1) a + cot^(-1) a)`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

Find the value of the expression in terms of x, with the help of a reference triangle

sin (cos–1(1 – x))


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Evaluate tan (tan–1(– 4)).


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`


Evaluate `cos[sin^-1  1/4 + sec^-1  4/3]`


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


The maximum value of sinx + cosx is ____________.


The minimum value of sinx - cosx is ____________.


The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.


If `"tan"^-1 ("cot"  theta) = 2theta, "then"  theta` is equal to ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


The value of sin (2tan-1 (0.75)) is equal to ____________.


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


`"cos"^-1 (1/2)`


If `"sin"^-1 (1 - "x") - 2  "sin"^-1 ("x") = pi/2,` then x is equal to ____________.


If `3  "sin"^-1 ((2"x")/(1 + "x"^2)) - 4  "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.


If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×