Advertisements
Advertisements
Question
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Options
`0, 1/2`
`1, 1/2`
0
`1/2`
Solution
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to 0.
Explanation:
`sin^-1 (1 - x) - 2sin^-1 x = pi/2`
= `sin^-1 (1 - x) = pi/2 + 2 sin^-1 x`
= `1 - x = cos [cos^-1 (1 - 2x^2)]`
= `1 - x = 1- 2x^2`
= `2x^2 - x = 0`
= `x = 0, 1/2`
But `x = 1/2` does not satisfy the equation so, x = 0.
APPEARS IN
RELATED QUESTIONS
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .
Prove that
\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Evaluate tan (tan–1(– 4)).
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
The maximum value of sinx + cosx is ____________.
The minimum value of sinx - cosx is ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
The value of sin (2tan-1 (0.75)) is equal to ____________.
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`"cos"^-1 (1/2)`
If `"sin"^-1 (1 - "x") - 2 "sin"^-1 ("x") = pi/2,` then x is equal to ____________.
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.
If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.