हिंदी

Sin–1 (1 – x) – 2 sin–1 x = π2 , then x is equal to ______. - Mathematics

Advertisements
Advertisements

प्रश्न

sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.

विकल्प

  • `0, 1/2`

  • `1, 1/2`

  • 0

  • `1/2`

MCQ
रिक्त स्थान भरें

उत्तर

sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to 0.

Explanation:

`sin^-1 (1 - x) - 2sin^-1 x = pi/2`

= `sin^-1 (1 - x) = pi/2 + 2 sin^-1 x`

= `1 - x = cos [cos^-1 (1 - 2x^2)]`

= `1 - x = 1- 2x^2`

= `2x^2 - x = 0`

= `x = 0, 1/2`

But `x = 1/2` does not satisfy the equation so, x = 0.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise 2.3 [पृष्ठ ५२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 16 | पृष्ठ ५२

संबंधित प्रश्न

Write the following function in the simplest form:

`tan^(-1)  x/(sqrt(a^2 - x^2))`, |x| < a


if `sin(sin^(-1)  1/5 + cos^(-1) x)  = 1` then find the value of x


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Choose the correct alternative:

sin(tan–1x), |x| < 1 is equal to


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


The minimum value of sinx - cosx is ____________.


The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.


If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


`"cos" (2  "tan"^-1 1/7) - "sin" (4  "sin"^-1 1/3) =` ____________.


`"tan"^-1 (sqrt3)`


If `"sin"^-1 (1 - "x") - 2  "sin"^-1 ("x") = pi/2,` then x is equal to ____________.


If `3  "sin"^-1 ((2"x")/(1 + "x"^2)) - 4  "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.


If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0


Solve:

sin–1(x) + sin–1(1 – x) = cos–1x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×