हिंदी

Solve the Following Equation for X: `Cos (Tan(-1) X) = Sin (Cot(-1) 3by4)` - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`

उत्तर

The given equation is `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`

`cos (tan^(-1) x) = sin(cot^(-1)  3/4)`

`=> cos (tan^(-1) x) = cos(pi/2 - cot^(-1)  3 /4)`              `[sintheta = cos(pi/2 - theta)]`

`=> cos(tan^(-1) x) = cos(tan^(-1)  (3/4))`         `(tan^(-1) x + cot^(-1) x = pi/2)`

`=> tan^(-1) x = tan^(-1) (3/4)`

`=> x = 3/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2016-2017 (March) Delhi Set 3

संबंधित प्रश्न

Find the value of the given expression.

`tan(sin^(-1)  3/5 + cot^(-1)  3/2)`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Prove that:

`cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`


sin (tan–1 x), | x| < 1 is equal to ______.


Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Prove that `sin^-1  3/5 - cos^-1  12/13 = sin^-1  16/65`


Prove that cot–17 + cot–18 + cot–118 = cot–13


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.


If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.


Solve for x : `"sin"^-1  2"x" + "sin"^-1  3"x" = pi/3`


If `"tan"^-1 2  "x + tan"^-1 3  "x" = pi/4`, then x is ____________.


`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.


The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.


Solve:

sin–1(x) + sin–1(1 – x) = cos–1x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×