Advertisements
Advertisements
प्रश्न
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
विकल्प
`pi/5`
`(2pi)/5`
`(3pi)/5`
`(4pi)/5`
उत्तर
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is `(2pi)/5`.
Explanation:
We know tan–1x + cot–1x = `pi/2`.
Therefore cot–1x = `pi/2 - pi/10`
⇒ cot–1x = `pi/2 - pi/10 = (2pi)/5`.
APPEARS IN
संबंधित प्रश्न
If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"sin"^-1 ((-1)/2)`
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`
Find the value of `sin^-1 [sin((13π)/7)]`
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.