हिंदी

If tan-1(x-1x+1)+tan-1(2x-12x+1)=tan-1(2336) = then prove that 24x2 – 23x – 12 = 0 - Mathematics

Advertisements
Advertisements

प्रश्न

If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0

योग

उत्तर

`tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)`

`\implies tan^-1 {((x  -  1)/(x  +  1) + (2x  -  1)/(2x  +  1))/(1 - ((x  -  1)/(x  +  1))((2x  -  1)/(2x  +  1)))} = tan^-1 (23/36)`

`\implies tan^-1 ((2x^2 - x - 1 + 2x^2 + x - 1)/(2x^2 + 3x + 1 - 2x^2 + 3x - 1)) = tan^-1 (23/36)`   ...`{{:("Using formula:"),(tan^-1"a" + tan^-1"b" = tan^-1(("a"  +  "b")/(1  -  "ab"))):}}`

`\implies tan^-1 ((4x^2 - 2)/(6x)) = 23/36`

∴ `(4x^2 - 2)/(6x) = 23/36`

`\implies` 6(4x2 – 2) = 23x

`\implies` 24x2 – 23x – 12 = 0

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2022-2023 (March) Official

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Solve  `tan^(-1) -  tan^(-1)  (x - y)/(x+y)` is equal to

(A) `pi/2`

(B). `pi/3` 

(C) `pi/4` 

(D) `(-3pi)/4`


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


Prove that

\[2 \tan^{- 1} \left( \frac{1}{5} \right) + \sec^{- 1} \left( \frac{5\sqrt{2}}{7} \right) + 2 \tan^{- 1} \left( \frac{1}{8} \right) = \frac{\pi}{4}\] .

 

If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Find the value, if it exists. If not, give the reason for non-existence

`tan^-1(sin(- (5pi)/2))`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


If `"tan"^-1 ("cot"  theta) = 2theta, "then"  theta` is equal to ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


The domain of the function defind by f(x) `= "sin"^-1 sqrt("x" - 1)` is ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 + "tan"^-1 1/8 =` ____________.


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


`"cos"^-1 1/2 + 2  "sin"^-1 1/2` is equal to ____________.


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

𝐴' Is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between ∠CAB and ∠CA'B is ______.


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


The value of cosec `[sin^-1((-1)/2)] - sec[cos^-1((-1)/2)]` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×