Advertisements
Advertisements
प्रश्न
Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
उत्तर
To prove `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4` we will use the following formula
`tan^(-1)+tan^(-1)y=tan^(-1)((x+y)/(1-xy)),xy<1`
`Let S=tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)`
`S=[tan^(-1)(1/2)+tan^(-1)(1/5)]+tan^(-1)(1/8)`
`S=tan^(-1)((1/2+1/5)/(1-1/2 xx 1/5))+tan^(-1)(1/8)`
`S=tan^(-1)(7/9)+tan^(-1)(1/8)`
`=tan^(-1)((7/9+1/8)/(1-(7/9)xx(1/8)))`
`=tan^(-1)((56+9)/(72-7))`
`S=tan^(-1)(65/65)=tan^(-1)1=pi/4`
Hence, `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.
Write the following function in the simplest form:
`tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
Solve the following equation:
`2 tan^(-1) (cos x) = tan^(-1) (2 cosec x)`
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Choose the correct alternative:
sin(tan–1x), |x| < 1 is equal to
Evaluate tan (tan–1(– 4)).
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
If `sin^-1 ((2"a")/(1 + "a"^2)) + cos^-1 ((1 - "a"^2)/(1 + "a"^2)) = tan^-1 ((2x)/(1 - x^2))`. where a, x ∈ ] 0, 1, then the value of x is ______.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
sin (tan−1 x), where |x| < 1, is equal to:
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
𝐴' Is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between ∠CAB and ∠CA'B is ______.
Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-
The value of `tan^-1 (x/y) - tan^-1 (x - y)/(x + y)` is equal to
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.