हिंदी

Prove `(9π)/8 - 9/4 Sin^(-1) 1/3 = 9/4 Sin^(-1) (2sqrt2)/3` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`

उत्तर

L.H.S  = `(9pi)/8 - 9/4 sin^(-1)  1/3`

`= 9/4 (pi/2 - sin^(-1)  1/3)`

`= 9/4 (cos^(-1)  1/3)`     ....(1)  `[sin^(-1)x + cos^(-1) x = pi/2]`

Now, let `cos^(-1)  1/3 = x` Then, `cos x  =  1/3 => sin x  =  sqrt(1 -  (1/3)^2) = (2sqrt2)/3` 

`:. x = sin^(-1) (2sqrt2)/3 =>  cos^(-1)  1/3 = sin^(-1)  (2sqrt2)/3`

:. L.H.S =  `9/4 sin^(-1)  (2(sqrt2))/3` = R.H.S

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise 2.3 [पृष्ठ ५२]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 12 | पृष्ठ ५२

संबंधित प्रश्न

Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`


Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


Prove that:

`cos^(-1)  4/5 + cos^(-1)  12/13 = cos^(-1)  33/65`


Prove that:

`cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


sin (tan–1 x), | x| < 1 is equal to ______.


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


Find the value, if it exists. If not, give the reason for non-existence

`tan^-1(sin(- (5pi)/2))`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Evaluate `tan^-1(sin((-pi)/2))`.


If `tan^-1x = pi/10` for some x ∈ R, then the value of cot–1x is ______.


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


Prove that `sin^-1  8/17 + sin^-1  3/5 = sin^-1  7/85`


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


The maximum value of sinx + cosx is ____________.


Solve for x : `"sin"^-1  2 "x" + sin^-1  3"x" = pi/3`


sin (tan−1 x), where |x| < 1, is equal to:


If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:


`"sin"^-1 ((-1)/2)`


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

𝐴' Is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between ∠CAB and ∠CA'B is ______.


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


What is the simplest form of `tan^-1  sqrt(1 - x^2 - 1)/x, x ≠ 0`


`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to


Find the value of `sin^-1 [sin((13π)/7)]`


`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.


If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×