हिंदी

Solve for X : Cos ( Tan − 1 X ) = Sin ( Cot − 1 3 4 ) . - Mathematics

Advertisements
Advertisements

प्रश्न

Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .

उत्तर

Given: 

\[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\]      .........(1)

\[cos\theta = \sin\left( \frac{\pi}{2} - \theta \right)\]

\[ \Rightarrow \cos\left( \tan^{- 1} x \right) = \sin\left( \frac{\pi}{2} - \tan^{- 1} x \right)\]

\[ \Rightarrow \cos\left( \tan^{- 1} x \right) = \sin\left( \cot^{- 1} x \right)\]

Substituting the value of 

\[\cos\left( \tan^{- 1} x \right)\]  in equation (1), we get:

\[\sin\left( \cot^{- 1} x \right) = \sin\left( \cot^{- 1} \frac{3}{4} \right)\]

\[ \Rightarrow x = \frac{3}{4}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2013-2014 (March) Foreign Set 1

संबंधित प्रश्न

Prove the following:

`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`


Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Write the following function in the simplest form:

`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`


if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


sin–1 (1 – x) – 2 sin–1 x = `pi/2` then x is equal to ______.


If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 [sin 5]`


Solve: `sin^-1  5/x + sin^-1  12/x = pi/2`


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Evaluate tan (tan–1(– 4)).


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of  `"sec" theta + "tan" theta` is ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


sin (tan−1 x), where |x| < 1, is equal to:


`"sin"^-1 (1/sqrt2)`


`"tan"^-1 (sqrt3)`


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×