Advertisements
Advertisements
प्रश्न
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
उत्तर
Given:
\[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .........(1)
\[cos\theta = \sin\left( \frac{\pi}{2} - \theta \right)\]
\[ \Rightarrow \cos\left( \tan^{- 1} x \right) = \sin\left( \frac{\pi}{2} - \tan^{- 1} x \right)\]
\[ \Rightarrow \cos\left( \tan^{- 1} x \right) = \sin\left( \cot^{- 1} x \right)\]
Substituting the value of
\[\sin\left( \cot^{- 1} x \right) = \sin\left( \cot^{- 1} \frac{3}{4} \right)\]
\[ \Rightarrow x = \frac{3}{4}\]
APPEARS IN
संबंधित प्रश्न
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
`cos^(-1) (cos (7pi)/6)` is equal to ______.
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Solve: `sin^-1 5/x + sin^-1 12/x = pi/2`
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Evaluate tan (tan–1(– 4)).
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
sin (tan−1 x), where |x| < 1, is equal to:
`"sin"^-1 (1/sqrt2)`
`"tan"^-1 (sqrt3)`
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`