हिंदी

If Tan-1 X - Cot-1 X = Tan-1 ( 1 √ 3 ) , X> 0 Then Find the Value of X and Hence Find the Value of Sec-1 ( 2 X ) - Mathematics

Advertisements
Advertisements

प्रश्न

If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.

योग

उत्तर १

tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0

⇒ tan-1 x - tan-1 `(1/"x")` = tan-1 `(1/sqrt(3))`   ....[∵ cot-1 "x" = tan-1 `(1/"x"), "x" >0`] 

⇒`tan^-1 (("x"-1/"x")/(1+"x". 1/"x")) = tan^-1 (1/sqrt3)`

⇒ `("x"^2 - 1)/(2"x") = 1/sqrt(3)`

⇒ `sqrt3"x"^2 - 2"x" - sqrt(3) = 0`

⇒ `sqrt3"x"^2 - 3"x" + "x" -sqrt(3) = 0`

⇒ `sqrt3x ("x" -sqrt3) + 1 ("x" - sqrt3) = 0`

⇒`(x - sqrt3) (sqrt3"x" + 1 ) =0`

⇒ `"x" = - 1/sqrt3, sqrt3`

∵ x >0, x = `sqrt3`

⇒ `sec^-1 (2/"x") = sec^-1 (2/sqrt3)`

⇒ `sec^-1 (2/"x") = sec^-1 (sec  π/(6))` 

⇒ `sec^-1 (2/"x") = π/6`

shaalaa.com

उत्तर २

Given,

tan-1 x - cot-1 x = tan-1 `(1/sqrt3),` x > 0

⇒ `tan^-1 x - tan^-1 (1/x) = tan^-1 (1/sqrt3)   ....[ ∵ cot^-1 x = tan-1 (1/x), x > 0 ] `

⇒`tan^-1 ((x-1/x)/(1+x. 1/x)) = tan^-1 (1/sqrt3)`

⇒ `("x"^2 - 1)/(2"x") = 1/sqrt(3)`

⇒ `sqrt3"x"^2 - 2"x" - sqrt(3) = 0`

⇒ `sqrt3"x"^2 - 3"x" + "x" -sqrt(3) = 0`

⇒ `sqrt3x ("x" -sqrt3) + 1 ("x" - sqrt3) = 0`

⇒`(x - sqrt3) (sqrt3"x" + 1 ) =0`

⇒ `"x" = - 1/sqrt3, sqrt3`

∵ x >0, x = `sqrt3`

⇒ `sec^-1 (2/"x") = sec^-1 (2/sqrt3)`

⇒ `sec^-1 (2/"x") = sec^-1 (sec  π/(6))` 

⇒ `sec^-1 (2/"x") = π/6`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 65/3/1

संबंधित प्रश्न

Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


 

Prove that:

`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`

 

If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.


`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.


If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.


The minimum value of sinx - cosx is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.


`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


`tan^-1  1/2 + tan^-1  2/11` is equal to


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


Solve for x: `sin^-1(x/2) + cos^-1x = π/6`


Solve:

sin–1(x) + sin–1(1 – x) = cos–1x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×