Advertisements
Advertisements
प्रश्न
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
उत्तर १
tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0
⇒ tan-1 x - tan-1 `(1/"x")` = tan-1 `(1/sqrt(3))` ....[∵ cot-1 "x" = tan-1 `(1/"x"), "x" >0`]
⇒`tan^-1 (("x"-1/"x")/(1+"x". 1/"x")) = tan^-1 (1/sqrt3)`
⇒ `("x"^2 - 1)/(2"x") = 1/sqrt(3)`
⇒ `sqrt3"x"^2 - 2"x" - sqrt(3) = 0`
⇒ `sqrt3"x"^2 - 3"x" + "x" -sqrt(3) = 0`
⇒ `sqrt3x ("x" -sqrt3) + 1 ("x" - sqrt3) = 0`
⇒`(x - sqrt3) (sqrt3"x" + 1 ) =0`
⇒ `"x" = - 1/sqrt3, sqrt3`
∵ x >0, x = `sqrt3`
⇒ `sec^-1 (2/"x") = sec^-1 (2/sqrt3)`
⇒ `sec^-1 (2/"x") = sec^-1 (sec π/(6))`
⇒ `sec^-1 (2/"x") = π/6`
उत्तर २
Given,
tan-1 x - cot-1 x = tan-1 `(1/sqrt3),` x > 0
⇒ `tan^-1 x - tan^-1 (1/x) = tan^-1 (1/sqrt3) ....[ ∵ cot^-1 x = tan-1 (1/x), x > 0 ] `
⇒`tan^-1 ((x-1/x)/(1+x. 1/x)) = tan^-1 (1/sqrt3)`
⇒ `("x"^2 - 1)/(2"x") = 1/sqrt(3)`
⇒ `sqrt3"x"^2 - 2"x" - sqrt(3) = 0`
⇒ `sqrt3"x"^2 - 3"x" + "x" -sqrt(3) = 0`
⇒ `sqrt3x ("x" -sqrt3) + 1 ("x" - sqrt3) = 0`
⇒`(x - sqrt3) (sqrt3"x" + 1 ) =0`
⇒ `"x" = - 1/sqrt3, sqrt3`
∵ x >0, x = `sqrt3`
⇒ `sec^-1 (2/"x") = sec^-1 (2/sqrt3)`
⇒ `sec^-1 (2/"x") = sec^-1 (sec π/(6))`
⇒ `sec^-1 (2/"x") = π/6`
APPEARS IN
संबंधित प्रश्न
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.
The minimum value of sinx - cosx is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
If `"tan"^-1 (("x" - 1)/("x" + 2)) + "tan"^-1 (("x" + 1)/("x" + 2)) = pi/4,` then x is equal to ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`tan^-1 1/2 + tan^-1 2/11` is equal to
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
`tan(2tan^-1 1/5 + sec^-1 sqrt(5)/2 + 2tan^-1 1/8)` is equal to ______.
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.