हिंदी

Solve the equation sin-16x+sin-163x=-π2 - Mathematics

Advertisements
Advertisements

प्रश्न

Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`

योग

उत्तर

From the given equation

we have `sin^-1 6x = - pi/2 - sin^-1 6sqrt(3)x`

⇒ `sin(sin^-1 6x) = sin(- pi/2 - sin^-1 6sqrt(3)x)`

⇒ 6x = `- cos(sin^-1 6sqrt(3)x)`

⇒ 6x = `-sqrt(1 - 108x^2)`.

Squaring, we get

`36x^2= 1 - 108x^2`

⇒ 144x2 = 1

⇒ x = `+- 1/12`

Note that x = `- 1/12` is the only root of the equation as x = `1/12` does not satisfy it.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ २६]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Solved Examples | Q 19 | पृष्ठ २६

संबंधित प्रश्न

 
 
 

Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`

 
 
 

Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


Prove that `tan {pi/4 + 1/2 cos^(-1)  a/b} + tan {pi/4 - 1/2 cos^(-1)  a/b} = (2b)/a`


If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Choose the correct alternative:

If `cot^-1(sqrt(sin alpha)) + tan^-1(sqrt(sin alpha))` = u, then cos 2u is equal to


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`


If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.


Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`


If a1, a2, a3,...,an is an arithmetic progression with common difference d, then evaluate the following expression.

`tan[tan^-1("d"/(1 + "a"_1 "a"_2)) + tan^-1("d"/(21 + "a"_2 "a"_3)) + tan^-1("d"/(1 + "a"_3 "a"_4)) + ... + tan^-1("d"/(1 + "a"_("n" - 1) "a""n"))]`


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


If cos–1α + cos–1β + cos–1γ = 3π, then α(β + γ) + β(γ + α) + γ(α + β) equals ______.


The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.


The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


`"cos"^-1 1/2 + 2  "sin"^-1 1/2` is equal to ____________.


`"sin"^-1 (1/sqrt2)`


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Measure of ∠EAB = ________.


What is the simplest form of `tan^-1  sqrt(1 - x^2 - 1)/x, x ≠ 0`


The set of all values of k for which (tan–1 x)3 + (cot–1 x)3 = kπ3, x ∈ R, is the internal ______.


If `cos^-1(2/(3x)) + cos^-1(3/(4x)) = π/2(x > 3/4)`, then x is equal to ______.


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×