Advertisements
Advertisements
प्रश्न
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
उत्तर
`cos[cos^-1 ((-sqrt(3))/2) + pi/6] = cos[cos^-1(cos (5pi)/6) + pi/6]` ......`(because cos (5pi)/6 = (-sqrt(3))/2)`
= `cos((5pi)/6 + pi/6)` ......`(because cos^-1 cosx = x; x ∈ [0, pi])`
= `cos(pi)` = –1
APPEARS IN
संबंधित प्रश्न
Prove that:
`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
Find the value of the given expression.
`sin^(-1) (sin (2pi)/3)`
Find the value of the given expression.
`tan^(-1) (tan (3pi)/4)`
Find the value of the given expression.
`tan(sin^(-1) 3/5 + cot^(-1) 3/2)`
Prove that:
`cos^(-1) 12/13 + sin^(-1) 3/5 = sin^(-1) 56/65`
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove `(9pi)/8 - 9/4 sin^(-1) 1/3 = 9/4 sin^(-1) (2sqrt2)/3`
sin (tan–1 x), | x| < 1 is equal to ______.
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Prove that `tan^-1x + tan^-1 (2x)/(1 - x^2) = tan^-1 (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.
`"sin"^-1 (1/sqrt2)`
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.