हिंदी

Evaluate cos[cos-1(-32)+π6] - Mathematics

Advertisements
Advertisements

प्रश्न

Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`

योग

उत्तर

`cos[cos^-1 ((-sqrt(3))/2) + pi/6] = cos[cos^-1(cos  (5pi)/6) + pi/6]`   ......`(because  cos  (5pi)/6 = (-sqrt(3))/2)`

= `cos((5pi)/6 + pi/6)`  ......`(because cos^-1 cosx = x; x ∈ [0, pi])`

= `cos(pi)` = –1

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise [पृष्ठ ३५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise | Q 2 | पृष्ठ ३५

संबंधित प्रश्न

 

Prove that:

`tan^(-1)""1/5+tan^(-1)""1/7+tan^(-1)""1/3+tan^(-1)""1/8=pi/4`

 

Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


Find the value of the given expression.

`sin^(-1) (sin  (2pi)/3)`


Find the value of the given expression.

`tan^(-1) (tan  (3pi)/4)`


Find the value of the given expression.

`tan(sin^(-1)  3/5 + cot^(-1)  3/2)`


Prove that:

`cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`


Prove that:

`tan^(-1)  63/16 = sin^(-1)  5/13 + cos^(-1)  3/5`


Prove `(9pi)/8 - 9/4  sin^(-1)  1/3 = 9/4 sin^(-1)  (2sqrt2)/3`


sin (tan–1 x), | x| < 1 is equal to ______.


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Prove that `tan^-1  2/11 + tan^-1  7/24 = tan^-1  1/2`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Choose the correct alternative:

`tan^-1 (1/4) + tan^-1 (2/9)` is equal to


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


If tan-1 2x + tan-1 3x = `pi/4,` then x is ____________.


If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


`"cos"^-1["cos"(2"cot"^-1(sqrt2 - 1))]` = ____________.


`"sin"^-1 (1/sqrt2)`


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


Solve:

sin–1(x) + sin–1(1 – x) = cos–1x.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×