हिंदी

Prove that: cos-1 1213+sin-1 35=sin-1 5665 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that:

`cos^(-1)  12/13 + sin^(-1)  3/5 = sin^(-1)  56/65`

योग

उत्तर

Let x = `cos^-1 "and" y = sin^-1(3/5)`

or cos x` =12/13 "and" sin y = 3/5`

`sin x = sqrt (1 - cos^2 x)  "and" cos y = sqrt(1 - sin^2 y)`

Now, `sin x = sqrt(1 - 144/169)` and `cosy = sqrt( 1 - 9/25)`

= `sin x = 5/13  "and" cos y = 4/5`

We know that,

sin (x + y) = sin x cos y + cos x sin y

= `5/13 xx 4/5 + 12/13 xx 3/5 `

= `20/65 + 36/65 `

= `56/65`

= `x + y = sin ^-1(56/65)`

or, `cos^-1(12/13) + sin^-1 (3/5)`

= `sin^-1(56/65)`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise 2.3 [पृष्ठ ५१]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise 2.3 | Q 6 | पृष्ठ ५१

संबंधित प्रश्न

Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`


Prove that: `tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4`


Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


`cos^(-1) (cos  (7pi)/6)` is equal to ______.


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove that:

`tan^(-1)  63/16 = sin^(-1)  5/13 + cos^(-1)  3/5`


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Find the value of  `tan(sin^-1  3/5 + cot^-1  3/2)`


Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`


Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.


The minimum value of sinx - cosx is ____________.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


`"cos"^-1 1/2 + 2  "sin"^-1 1/2` is equal to ____________.


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


`"sin"^-1 (1/sqrt2)`


If `3  "sin"^-1 ((2"x")/(1 + "x"^2)) - 4  "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.


The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


Find the value of `cos^-1 (1/2) + 2sin^-1 (1/2) ->`:-


The value of `tan^-1 (x/y) - tan^-1  (x - y)/(x + y)` is equal to


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


Find the value of `tan^-1 [2 cos (2 sin^-1  1/2)] + tan^-1 1`.


`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×