Advertisements
Advertisements
प्रश्न
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
उत्तर
`sin^-1 8/17 + sin^-1 3/5 = tan^-1 8/sqrt(17^2 - 8^2) + tan^2 3/sqrt(5^2 - 3^2)` ...`[sin^-1 "p"/"h" = tan^-1 "p"/sqrt("h"^2 - "p"^2)]`
= `tan^-1 8/15 + tan^-1 3/4`
= `tan^-1 ((8/15 + 3/4)/(1 - 8/15 xx 3/4))` ...`[tan^-1x + tan^1y = tan^1((x + y)/(1 - x xx y))]`
= `tan^-1[((32 + 45)/60)/(1 - 24/60)]`
= `tan^-1 77/36`
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
Write the following function in the simplest form:
`tan^(-1) x/(sqrt(a^2 - x^2))`, |x| < a
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Prove that `tan {pi/4 + 1/2 cos^(-1) a/b} + tan {pi/4 - 1/2 cos^(-1) a/b} = (2b)/a`
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Find: ∫ sin x · log cos x dx
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Prove that `tan^-1 2/11 + tan^-1 7/24 = tan^-1 1/2`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
If α ≤ 2 sin–1x + cos–1x ≤ β, then ______.
Evaluate `cos[cos^-1 ((-sqrt(3))/2) + pi/6]`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
`"tan"^-1 1/3 + "tan"^-1 1/5 + "tan"^-1 1/7 = "tan"^-1 1/8 =` ____________.
sin (tan−1 x), where |x| < 1, is equal to:
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
`"sin"^-1 (1/sqrt2)`
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`
Solve:
sin–1(x) + sin–1(1 – x) = cos–1x.