Advertisements
Advertisements
प्रश्न
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
उत्तर
`tan^(-1) (sqrt(1+x^2) -1)/x`
Put ` x = tan theta =>theta = tan^(-1) x`
`:. tan^(-1) (sqrt(1+x^2) - 1)/x = tan^(-1) ((sqrt(1 + tan^2 theta) - 1)/ tan theta)`
`= tan^(-1) ((sec theta -1)/tan theta) = tan^(-1) ((1 - cos theta)/ sin theta)`
`= tan^(-1) ((2 sin^2 theta/2)/(2 sin theta/2 cos theta/2))`
`= tan^(-1) (tan theta/2) = theta/2 = 1/2 tan^(-1) x`
∴ `tan^(-1) (sqrt(1 + x^2 - 1)/(x)) = 1/2 tan^(-1)x`
APPEARS IN
संबंधित प्रश्न
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
Prove that `tan^(-1)((6x-8x^3)/(1-12x^2))-tan^(-1)((4x)/(1-4x^2))=tan^(-1)2x;|2x|<1/sqrt3`
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Find the value of the following:
`tan^-1 [2 cos (2 sin^-1 1/2)]`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
`sin[pi/3 - sin^(-1) (-1/2)]` is equal to ______.
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
Solve for x : `"sin"^-1 2 "x" + sin^-1 3"x" = pi/3`
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
The value of expression 2 `"sec"^-1 2 + "sin"^-1 (1/2)`
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"sin"^-1 ((-1)/2)`
If `3 "sin"^-1 ((2"x")/(1 + "x"^2)) - 4 "cos"^-1 ((1 - "x"^2)/(1 + "x"^2)) + 2 "tan"^-1 ((2"x")/(1 - "x"^2)) = pi/3` then x is equal to ____________.
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
`tan^-1 1/2 + tan^-1 2/11` is equal to
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
Write the following function in the simplest form:
`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`