हिंदी

Prove `Tan^(-1) 2/11 + Tan^(-1) 7/24 = Tan^(-1) 1/2` - Mathematics

Advertisements
Advertisements

प्रश्न

Prove `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`

उत्तर

To prove:  `tan^(-1)  2/11 + tan^(-1)  7/24 = tan^(-1)  1/2`

L.H.S =` tan^(-1)  2/11 + tan^(-1)  7/24`

`= tan^(-1) (2/11 + 7/24)/(1-2/11. 7/24)`    `[tan^(-1) x + tan^(-1) y = tan^(-1)  (x + y)/(1 - xy)]`

= tan^(-1)  `((48+77)/(11xx24))/((11xx24 - 14)/(11xx24))`

`= tan^(-1)  (48 + 77)/(264 - 14) = tan^(-1)  125/250 = tan^(-1)  1/2 =`  R.H.S

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Exercise 2.2 [पृष्ठ ४७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Exercise 2.2 | Q 3 | पृष्ठ ४७

संबंधित प्रश्न

If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.


Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`


Write the following function in the simplest form:

`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`


Find the value of `cot(tan^(-1) a + cot^(-1) a)`


Prove that:

`tan^(-1)  63/16 = sin^(-1)  5/13 + cos^(-1)  3/5`


Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`


If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.


Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1  ("x")/(2), "x">0.`


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


If tan–1x + tan1y + tan1z = π, show that x + y + z = xyz


Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec"  x)`


Choose the correct alternative:

`sin^-1  3/5 - cos^-1  13/13 + sec^-1  5/3 - "cosec"^-1  13/12` is equal to


Choose the correct alternative:

`tan^-1 (1/4) + tan^-1 (2/9)` is equal to


Choose the correct alternative:

sin–1(2 cos2x – 1) + cos1(1 – 2 sin2x) =


Choose the correct alternative:

If |x| ≤ 1, then `2tan^-1x - sin^-1  (2x)/(1 + x^2)` is equal to


Choose the correct alternative:

The equation tan–1x – cot1x = `tan^-1 (1/sqrt(3))` has


Evaluate `tan^-1(sin((-pi)/2))`.


Evaluate tan (tan–1(– 4)).


Show that `2tan^-1 {tan  alpha/2 * tan(pi/4 - beta/2)} = tan^-1  (sin alpha cos beta)/(cosalpha + sinbeta)`


Show that `tan(1/2 sin^-1  3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?


If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.


The maximum value of sinx + cosx is ____________.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


`"cot" ("cosec"^-1  5/3 + "tan"^-1  2/3) =` ____________.


If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:


The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.


`"sin"^-1 (1 - "x") - 2  "sin"^-1 "x" = pi/2`


`"sin"^-1 ((-1)/2)`


What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1


What is the simplest form of `tan^-1  sqrt(1 - x^2 - 1)/x, x ≠ 0`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×