Advertisements
Advertisements
प्रश्न
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
उत्तर
To prove: `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
L.H.S =` tan^(-1) 2/11 + tan^(-1) 7/24`
`= tan^(-1) (2/11 + 7/24)/(1-2/11. 7/24)` `[tan^(-1) x + tan^(-1) y = tan^(-1) (x + y)/(1 - xy)]`
= tan^(-1) `((48+77)/(11xx24))/((11xx24 - 14)/(11xx24))`
`= tan^(-1) (48 + 77)/(264 - 14) = tan^(-1) 125/250 = tan^(-1) 1/2 =` R.H.S
APPEARS IN
संबंधित प्रश्न
If `tan^-1(2x)+tan^-1(3x)=pi/4`, then find the value of ‘x’.
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Prove that:
`tan^(-1) 63/16 = sin^(-1) 5/13 + cos^(-1) 3/5`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
If tan-1 x - cot-1 x = tan-1 `(1/sqrt(3)),`x> 0 then find the value of x and hence find the value of sec-1 `(2/x)`.
Solve for x : `tan^-1 ((2-"x")/(2+"x")) = (1)/(2)tan^-1 ("x")/(2), "x">0.`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Solve: `2tan^-1 (cos x) = tan^-1 (2"cosec" x)`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Choose the correct alternative:
sin–1(2 cos2x – 1) + cos–1(1 – 2 sin2x) =
Choose the correct alternative:
If |x| ≤ 1, then `2tan^-1x - sin^-1 (2x)/(1 + x^2)` is equal to
Choose the correct alternative:
The equation tan–1x – cot–1x = `tan^-1 (1/sqrt(3))` has
Evaluate `tan^-1(sin((-pi)/2))`.
Evaluate tan (tan–1(– 4)).
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The maximum value of sinx + cosx is ____________.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
The value of sin (2tan-1 (0.75)) is equal to ____________.
`"cot" ("cosec"^-1 5/3 + "tan"^-1 2/3) =` ____________.
If x = a sec θ, y = b tan θ, then `("d"^2"y")/("dx"^2)` at θ = `π/6` is:
The value of `"cos"^-1 ("cos" ((33pi)/5))` is ____________.
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
`"sin"^-1 ((-1)/2)`
What is the value of cos (sec–1x + cosec–1x), |x| ≥ 1
What is the simplest form of `tan^-1 sqrt(1 - x^2 - 1)/x, x ≠ 0`