Advertisements
Advertisements
Question
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Solution
To prove: `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
L.H.S =` tan^(-1) 2/11 + tan^(-1) 7/24`
`= tan^(-1) (2/11 + 7/24)/(1-2/11. 7/24)` `[tan^(-1) x + tan^(-1) y = tan^(-1) (x + y)/(1 - xy)]`
= tan^(-1) `((48+77)/(11xx24))/((11xx24 - 14)/(11xx24))`
`= tan^(-1) (48 + 77)/(264 - 14) = tan^(-1) 125/250 = tan^(-1) 1/2 =` R.H.S
APPEARS IN
RELATED QUESTIONS
Prove that `2tan^(-1)(1/5)+sec^(-1)((5sqrt2)/7)+2tan^(-1)(1/8)=pi/4`
Solve for x : tan-1 (x - 1) + tan-1x + tan-1 (x + 1) = tan-1 3x
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Prove the following:
`3cos^(-1) x = cos^(-1)(4x^3 - 3x), x in [1/2, 1]`
Write the following function in the simplest form:
`tan^(-1) (sqrt(1+x^2) -1)/x, x != 0`
Write the following function in the simplest form:
`tan^(-1) ((3a^2 x - x^3)/(a^3 - 3ax^2)), a > 0; (-a)/sqrt3 <= x a/sqrt3`
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
`cos^(-1) (cos (7pi)/6)` is equal to ______.
Prove that:
`cos^(-1) 4/5 + cos^(-1) 12/13 = cos^(-1) 33/65`
sin–1 (1 – x) – 2 sin–1 x = `pi/2` , then x is equal to ______.
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Find the value, if it exists. If not, give the reason for non-existence
`tan^-1(sin(- (5pi)/2))`
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 [sin 5]`
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Find the value of `tan(sin^-1 3/5 + cot^-1 3/2)`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
If `sin^-1x + sin^-1y = (2pi)/3` ; then `cos^-1x + cos^-1y` is equal to
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
Prove that cot–17 + cot–18 + cot–118 = cot–13
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
The value of cot–1(–x) for all x ∈ R in terms of cot–1x is ______.
`"cot" (pi/4 - 2 "cot"^-1 3) =` ____________.
The value of cot-1 9 + cosec-1 `(sqrt41/4)` is given by ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
`"tan" (pi/4 + 1/2 "cos"^-1 "x") + "tan" (pi/4 - 1/2 "cos"^-1 "x") =` ____________.
`"tan"^-1 (sqrt3)`
Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠CAB = ________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
Measure of ∠DAB = ________.
The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:
ЁЭР┤' Is another viewer standing on the same line of observation across the road. If the width of the road is 5 meters, then the difference between ∠CAB and ∠CA'B is ______.
`sin^-1(1 - x) - 2sin^-1 x = pi/2`, tan 'x' is equal to
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`