Advertisements
Advertisements
प्रश्न
Evaluate `cos[sin^-1 1/4 + sec^-1 4/3]`
उत्तर
`cos[sin^-1 1/4 + sec^-1 4/3] = cos[sin^-1 1/4 + cos^-1 3/4]`
= `cos(sin^-1 1/4) cos(cos^-1 3/4) - sin(sin^-1 1/4) sin(cos^-1 3/4)`
= `3/4 sqrt(1 - (1/4)^2) - 1/4 sqrt(1 - (3/4)^2`
= `3/4 sqrt(15)/4 - 1/4 sqrt(7)/4`
= `(3sqrt(15) - sqrt(7))/6`
APPEARS IN
संबंधित प्रश्न
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Prove `tan^(-1) 2/11 + tan^(-1) 7/24 = tan^(-1) 1/2`
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
if `sin(sin^(-1) 1/5 + cos^(-1) x) = 1` then find the value of x
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Solve `tan^(-1) - tan^(-1) (x - y)/(x+y)` is equal to
(A) `pi/2`
(B). `pi/3`
(C) `pi/4`
(D) `(-3pi)/4`
Prove that `3sin^(-1)x = sin^(-1) (3x - 4x^3)`, `x in [-1/2, 1/2]`
If y = `(x sin^-1 x)/sqrt(1 -x^2)`, prove that: `(1 - x^2)dy/dx = x + y/x`
Solve: tan-1 4 x + tan-1 6x `= π/(4)`.
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Prove that `sin^-1 3/5 - cos^-1 12/13 = sin^-1 16/65`
If tan–1x + tan–1y + tan–1z = π, show that x + y + z = xyz
Find the number of solutions of the equation `tan^-1 (x - 1) + tan^-1x + tan^-1(x + 1) = tan^-1(3x)`
Choose the correct alternative:
`sin^-1 3/5 - cos^-1 13/13 + sec^-1 5/3 - "cosec"^-1 13/12` is equal to
Evaluate tan (tan–1(– 4)).
Show that `tan(1/2 sin^-1 3/4) = (4 - sqrt(7))/3` and justify why the other value `(4 + sqrt(7))/3` is ignored?
If |x| ≤ 1, then `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` is equal to ______.
If y = `2 tan^-1x + sin^-1 ((2x)/(1 + x^2))` for all x, then ______ < y < ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
If `"tan"^-1 2 "x + tan"^-1 3 "x" = pi/4`, then x is ____________.
`"tan"^-1 (sqrt3)`
The Simplest form of `cot^-1 (1/sqrt(x^2 - 1))`, |x| > 1 is
`50tan(3tan^-1(1/2) + 2cos^-1(1/sqrt(5))) + 4sqrt(2) tan(1/2tan^-1(2sqrt(2)))` is equal to ______.
If `tan^-1 ((x - 1)/(x + 1)) + tan^-1 ((2x - 1)/(2x + 1)) = tan^-1 (23/36)` = then prove that 24x2 – 23x – 12 = 0
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`