हिंदी

Prove that 2sin-1 35-tan-1 1731=π4 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that `2sin^-1  3/5 - tan^-1  17/31 = pi/4`

योग

उत्तर

Let `sin^-1  3/5` = θ

Then sin θ = `3/5`

Where θ ∈ `[(-pi)/2, pi/2]`

Thus tan θ = `3/4`

Which gives θ = `tan^-1  3/4`.

Therefore, `2sin^-1  3/5 - tan^-1  17/31`

= `2theta - tan^-1  17/31`

= `2tan^-1  3/4 - tan^-1  17/31`

= `tan^-1 ((2 * 3/4)/(1 - 9/16)) - tan^-1  17/31`

= `tan^-1  24/7 - tan^-1  17/31`

= `tan^-1 ((24/7 - 17/31)/(1 + 24/7 * 17/31))`

= `pi/4`

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 2: Inverse Trigonometric Functions - Solved Examples [पृष्ठ २४]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 12
अध्याय 2 Inverse Trigonometric Functions
Solved Examples | Q 13 | पृष्ठ २४

संबंधित प्रश्न

 

If `sin (sin^(−1)(1/5)+cos^(−1) x)=1`, then find the value of x.

 

If a line makes angles 90°, 60° and θ with x, y and z-axis respectively, where θ is acute, then find θ.


Find the value of the following:

`tan^-1 [2 cos (2  sin^-1 1/2)]`


Find the value of following:

`tan  1/2 [sin^(-1)  (2x)/(1+ x^2) + cos^(-1)  (1-y^2)/(1+y^2)], |x| < 1, y> 0  and xy < 1`


Prove that:

`tan^(-1)  63/16 = sin^(-1)  5/13 + cos^(-1)  3/5`


Prove `tan^(-1)   1/5 + tan^(-1)  (1/7) + tan^(-1)  1/3 + tan^(-1)  1/8 = pi/4`


Prove that:

`cot^(-1)  ((sqrt(1+sin x) + sqrt(1-sinx))/(sqrt(1+sin x) - sqrt(1- sinx))) = x/2`, `x in (0, pi/4)` 


Solve for x : \[\tan^{- 1} \left( \frac{x - 2}{x - 1} \right) + \tan^{- 1} \left( \frac{x + 2}{x + 1} \right) = \frac{\pi}{4}\] .


Prove that `tan^-1  2/11 + tan^-1  7/24 = tan^-1  1/2`


Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`


Prove that `tan^-1x + tan^-1  (2x)/(1 - x^2) = tan^-1  (3x - x^3)/(1 - 3x^2), |x| < 1/sqrt(3)`


Choose the correct alternative:

`sin^-1 (tan  pi/4) - sin^-1 (sqrt(3/x)) = pi/6`. Then x is a root of the equation


Evaluate tan (tan–1(– 4)).


Prove that cot–17 + cot–18 + cot–118 = cot–13


Prove that `tan^-1 ((sqrt(1 + x^2) + sqrt(1 - x^2))/((1 + x^2) - sqrt(1 - x^2))) = pi/2 + 1/2 cos^-1x^2`


The number of real solutions of the equation `sqrt(1 + cos 2x) = sqrt(2) cos^-1 (cos x)` in `[pi/2, pi]` is ______.


The value of cos215° - cos230° + cos245° - cos260° + cos275° is ______.


If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of  `"sec" theta + "tan" theta` is ____________.


The value of `"tan"^-1 (1/2) + "tan"^-1 (1/3) + "tan"^-1 (7/8)` is ____________.


`"cot" (pi/4 - 2  "cot"^-1  3) =` ____________.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


The value of sin (2tan-1 (0.75)) is equal to ____________.


The value of expression 2 `"sec"^-1  2 + "sin"^-1 (1/2)`


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


sin (tan−1 x), where |x| < 1, is equal to:


Solve for x : `{"x cos" ("cot"^-1 "x") + "sin" ("cot"^-1 "x")}^2` = `51/50


The Government of India is planning to fix a hoarding board at the face of a building on the road of a busy market for awareness on COVID-19 protocol. Ram, Robert and Rahim are the three engineers who are working on this project. “A” is considered to be a person viewing the hoarding board 20 metres away from the building, standing at the edge of a pathway nearby. Ram, Robert and Rahim suggested to the firm to place the hoarding board at three different locations namely C, D and E. “C” is at the height of 10 metres from the ground level. For viewer A, the angle of elevation of “D” is double the angle of elevation of “C” The angle of elevation of “E” is triple the angle of elevation of “C” for the same viewer. Look at the figure given and based on the above information answer the following:

Domain and Range of tan-1 x = ________.


`tan(2tan^-1  1/5 + sec^-1  sqrt(5)/2 + 2tan^-1  1/8)` is equal to ______.


Write the following function in the simplest form:

`tan^-1 ((cos x - sin x)/(cos x + sin x)), (-pi)/4 < x < (3 pi)/4`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×