Advertisements
Advertisements
प्रश्न
Solve for x: `sin^-1(x/2) + cos^-1x = π/6`
उत्तर
`sin^-1(x/2) + cos^-1x = π/6`
Since, `sin^-1x + cos^-1x = π/2`
∴ `sin^-1(x/2) + π/2 - sin^-1x = π/6`
`\implies -sin^-1x + sin^-1 x/2 = π/6 - π/2`
`\implies -sin^-1x + sin^-1 x/2 = (2π - 6π)/12`
`\implies -sin^-1x + sin^-1 x/2 = -π/3`
`\implies sin^-1 x/2 = -π/3 + sin^-1x`
`\implies x/2 = sin(-π/3 + sin^-1x)`
`\implies x/2 = sin((-π)/3)cos(sin^-1x) + cos((-π)/3)sin(sin^-1x)`
`\implies x/2 = -sin π/3 cos cos^-1 sqrt(1 - x^2) + cos(π/3)x`
`\implies x/2 = -sqrt(3)/2 sqrt(1 - x^2) + x/2`
`\implies 0 = - sqrt(3)/2 sqrt(1 - x^2)`
`\implies` 1 – x2 = 0
`\implies` x2 = 1
∴ x = 1 is the only answer because x = – 1 will not satisfy above question.
APPEARS IN
संबंधित प्रश्न
Prove the following:
`3sin^(-1) x = sin^(-1)(3x - 4x^3), x in [-1/2, 1/2]`
Write the following function in the simplest form:
`tan^(-1) (sqrt((1-cos x)/(1 + cos x))), x < pi`
Find the value of `cot(tan^(-1) a + cot^(-1) a)`
Find the value of following:
`tan 1/2 [sin^(-1) (2x)/(1+ x^2) + cos^(-1) (1-y^2)/(1+y^2)], |x| < 1, y> 0 and xy < 1`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Find: ∫ sin x · log cos x dx
Find the value of the expression in terms of x, with the help of a reference triangle
sin (cos–1(1 – x))
Find the value of the expression in terms of x, with the help of a reference triangle
cos (tan–1 (3x – 1))
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Find the value of `cot[sin^-1 3/5 + sin^-1 4/5]`
Solve: `cot^-1 x - cot^-1 (x + 2) = pi/12, x > 0`
Choose the correct alternative:
`tan^-1 (1/4) + tan^-1 (2/9)` is equal to
Evaluate: `tan^-1 sqrt(3) - sec^-1(-2)`.
Evaluate: `sin^-1 [cos(sin^-1 sqrt(3)/2)]`
Show that `2tan^-1 {tan alpha/2 * tan(pi/4 - beta/2)} = tan^-1 (sin alpha cos beta)/(cosalpha + sinbeta)`
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
If `"sec" theta = "x" + 1/(4 "x"), "x" in "R, x" ne 0,`then the value of `"sec" theta + "tan" theta` is ____________.
If `"tan"^-1 ("cot" theta) = 2theta, "then" theta` is equal to ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
`"cos" (2 "tan"^-1 1/7) - "sin" (4 "sin"^-1 1/3) =` ____________.
The value of `"tan"^-1 (1/2) + "tan"^-1(1/3) + "tan"^-1(7/8)` is ____________.
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
`"sin"^-1 (1 - "x") - 2 "sin"^-1 "x" = pi/2`
If `6"sin"^-1 ("x"^2 - 6"x" + 8.5) = pi,` then x is equal to ____________.
If `"sin" {"sin"^-1 (1/2) + "cos"^-1 "x"} = 1`, then the value of x is ____________.
Find the value of `sin^-1 [sin((13π)/7)]`
Find the value of `tan^-1 [2 cos (2 sin^-1 1/2)] + tan^-1 1`.
`"tan" ^-1 sqrt3 - "cot"^-1 (- sqrt3)` is equal to ______.