हिंदी

If sin–1x + sin–1y + sin–1z = π, show that x2-y2-z2+2yz1-x2=0 - Mathematics

Advertisements
Advertisements

प्रश्न

If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`

योग

उत्तर

Given, sin–1x + sin–1y + sin–1z = π

`\implies` sin–1x + sin–1y = π – sin–1z

`\implies sin^-1[xsqrt(1 - y^2) + ysqrt(1 - x^2)] = (pi - sin^-1z)`

`\implies xsqrt(1 - y^2) + ysqrt(1 - x^2) = sin(pi - sin^-1z)`

`\implies xsqrt(1 - y^2) + ysqrt(1 - x^2) = z`

`\implies xsqrt(1 - y^2) = z - ysqrt(1 - x^2)`

Now squaring on both sides, we get,

`(xsqrt(1 - y^2))^2 = (z - ysqrt(1 - x^2))^2`

`\implies x^2(1 - y^2) = (z^2 + y^2(1 - x^2) - 2zy sqrt(1 - x^2))`

`\implies x^2 - x^2y^2 = z^2 + y^2 - x^2y^2 - 2yz sqrt(1 - x^2)`

`\implies x^2 - y^2 - z^2 + 2yz sqrt(1 - x^2)` = 0

Hence proved

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (February) Official

वीडियो ट्यूटोरियलVIEW ALL [3]

संबंधित प्रश्न

Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `


Prove `2 tan^(-1)  1/2 + tan^(-1)  1/7 = tan^(-1)  31/17`


Write the function in the simplest form: `tan^(-1)  1/(sqrt(x^2 - 1)), |x| > 1`


Write the function in the simplest form:  `tan^(-1)  ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`


if `tan^(-1)  (x-1)/(x - 2) + tan^(-1)  (x + 1)/(x + 2) = pi/4` then find the value of x.


Prove that:

`sin^(-1)  8/17 + sin^(-1)  3/5 = tan^(-1)  77/36`


Prove that:

`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`


Solve the following equation for x:  `cos (tan^(-1) x) = sin (cot^(-1)  3/4)`


Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .


If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.


Find the value, if it exists. If not, give the reason for non-existence

`sin^-1 (cos pi)`


Find the value of the expression in terms of x, with the help of a reference triangle

`tan(sin^-1(x + 1/2))`


Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`


Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`


Simplify: `tan^-1  x/y - tan^-1  (x - y)/(x + y)`


Solve: `tan^-1x = cos^-1  (1 - "a"^2)/(1 + "a"^2) - cos^-1  (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`


Choose the correct alternative:

If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to


Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`


The value of the expression `tan (1/2 cos^-1  2/sqrt(5))` is ______.


The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.


If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.


The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.


`"sin" {2  "cos"^-1 ((-3)/5)}` is equal to ____________.


The value of the expression tan `(1/2  "cos"^-1 2/sqrt3)`


Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:


Solve for x : `"sin"^-1  2"x" + "sin"^-1  3"x" = pi/3`


`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`


`"sin"^-1 (1/sqrt2)`


`"cos"^-1 (1/2)`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×