Advertisements
Advertisements
प्रश्न
If sin–1x + sin–1y + sin–1z = π, show that `x^2 - y^2 - z^2 + 2yzsqrt(1 - x^2) = 0`
उत्तर
Given, sin–1x + sin–1y + sin–1z = π
`\implies` sin–1x + sin–1y = π – sin–1z
`\implies sin^-1[xsqrt(1 - y^2) + ysqrt(1 - x^2)] = (pi - sin^-1z)`
`\implies xsqrt(1 - y^2) + ysqrt(1 - x^2) = sin(pi - sin^-1z)`
`\implies xsqrt(1 - y^2) + ysqrt(1 - x^2) = z`
`\implies xsqrt(1 - y^2) = z - ysqrt(1 - x^2)`
Now squaring on both sides, we get,
`(xsqrt(1 - y^2))^2 = (z - ysqrt(1 - x^2))^2`
`\implies x^2(1 - y^2) = (z^2 + y^2(1 - x^2) - 2zy sqrt(1 - x^2))`
`\implies x^2 - x^2y^2 = z^2 + y^2 - x^2y^2 - 2yz sqrt(1 - x^2)`
`\implies x^2 - y^2 - z^2 + 2yz sqrt(1 - x^2)` = 0
Hence proved
APPEARS IN
संबंधित प्रश्न
Prove that `cot^(-1)((sqrt(1+sinx)+sqrt(1-sinx))/(sqrt(1+sinx)-sqrt(1-sinx)))=x/2;x in (0,pi/4) `
Prove `2 tan^(-1) 1/2 + tan^(-1) 1/7 = tan^(-1) 31/17`
Write the function in the simplest form: `tan^(-1) 1/(sqrt(x^2 - 1)), |x| > 1`
Write the function in the simplest form: `tan^(-1) ((cos x - sin x)/(cos x + sin x)) `,` 0 < x < pi`
if `tan^(-1) (x-1)/(x - 2) + tan^(-1) (x + 1)/(x + 2) = pi/4` then find the value of x.
Prove that:
`sin^(-1) 8/17 + sin^(-1) 3/5 = tan^(-1) 77/36`
Prove that:
`tan^(-1) sqrtx = 1/2 cos^(-1) ((1-x)/(1+x)) , x in [0, 1]`
Solve the following equation for x: `cos (tan^(-1) x) = sin (cot^(-1) 3/4)`
Solve for x : \[\cos \left( \tan^{- 1} x \right) = \sin \left( \cot^{- 1} \frac{3}{4} \right)\] .
If cos-1 x + cos -1 y + cos -1 z = π , prove that x2 + y2 + z2 + 2xyz = 1.
Find the value, if it exists. If not, give the reason for non-existence
`sin^-1 (cos pi)`
Find the value of the expression in terms of x, with the help of a reference triangle
`tan(sin^-1(x + 1/2))`
Find the value of `sin^-1[cos(sin^-1 (sqrt(3)/2))]`
Prove that `tan^-1x + tan^-1y + tan^-1z = tan^-1[(x + y + z - xyz)/(1 - xy - yz - zx)]`
Simplify: `tan^-1 x/y - tan^-1 (x - y)/(x + y)`
Solve: `tan^-1x = cos^-1 (1 - "a"^2)/(1 + "a"^2) - cos^-1 (1 - "b"^2)/(1 + "b"^2), "a" > 0, "b" > 0`
Choose the correct alternative:
If `sin^-1x + cot^-1 (1/2) = pi/2`, then x is equal to
Solve the equation `sin^-1 6x + sin^-1 6sqrt(3)x = - pi/2`
The value of the expression `tan (1/2 cos^-1 2/sqrt(5))` is ______.
The value of `"tan"^ -1 (3/4) + "tan"^-1 (1/7)` is ____________.
If `"cot"^-1 (sqrt"cos" alpha) - "tan"^-1 (sqrt"cos" alpha) = "x",` the sinx is equal to ____________.
The value of cot `("cosec"^-1 5/3 + "tan"^-1 2/3)` is ____________.
`"sin" {2 "cos"^-1 ((-3)/5)}` is equal to ____________.
The value of the expression tan `(1/2 "cos"^-1 2/sqrt3)`
Simplest form of `tan^-1 ((sqrt(1 + cos "x") + sqrt(1 - cos "x"))/(sqrt(1 + cos "x") - sqrt(1 - cos "x")))`, `π < "x" < (3π)/2` is:
Solve for x : `"sin"^-1 2"x" + "sin"^-1 3"x" = pi/3`
`"tan"^-1 1 + "cos"^-1 ((-1)/2) + "sin"^-1 ((-1)/2)`
`"sin"^-1 (1/sqrt2)`
`"cos"^-1 (1/2)`